

Adaptation to a
Changing Climate in
the Coastal Zone – A
Case Study of Prime
Hook National Wildlife
Refuge

Jeff Tabar, PE, D.CE

Project Team

US Army Corps of Engineers

Prime Hook

- National Wildlife Refuge
- State of Delaware
- Founded in 1963
- Approx. 16 sq. miles (40 sq. Km)
- Marshes and shoreline
- ❖ 10,000 acres, mostly wetlands
- Four Management Units I, II, III and IV.
- ❖ Two central units Unit II and Unit III – managed as freshwater impoundments for waterfowl habitat through installation of water control structures in 1980's
- Hurricane Sandy brought largest final blow to the system

History of Shoreline Overwashes & Breaches

2006 – Hurricane Ernesto

- In Unit I only
- Rejuvenated the Unit I salt marsh
- Decision not to repair, natural salt marsh

2008 – Mother's Day Storm

- Moderate overwash in Unit II
- Repaired in October 2008
- 2009 freshwater vegetation management successful

2009 – October/November Nor'Easters

- Two breaches formed in Unit II
- Salt marsh fared well
- Impounded freshwater wetlands experienced peat loss and rapid conversion to mostly open water
- Reconsidered wetland management

2012 – Hurricane Sandy

- Two new large breaches
- Total breached area nearly tripled

Meanwhile, an unhappy public...

- Prime Hook Road (divides Units II and III) was only route in and out of a beach community, and now flooded regularly; Many locals considered "life and limb" to be at risk
- Locals passionate, well-organized, politically connected; Media didn't appear to be on our side
- Meanwhile... Others opposed our plans to take any action at all, resulting in legal delays and a very polarized debate
- As the CCP process pressed on...
 "Answers are coming," we told them

In 65 years, from 1926 to 1992, the shoreline receded about 300 feet.

1992-2012 (20 years) to recede about 200 feet more, to its current position.

Sea Level Rise (SLR)?

Overwash along refuge:

1991/92

1998

2006

2008

2009

2011

2013 - post-Sandy!

Bruun Rule

$$R = S \; \frac{W_*}{h_* + B_o}$$

Modified Bruun Rule

ICCE 2018

Sea Level Rise and other Variables

The sea level rise (h)	3.42 mm/yr
Depth of closure (d _c)	1.83 m
The height from the waterline to the top of the dune (d_d)	1.80 m
The distance from the shoreline to the depth of closure (x_c)	182.88 m
The height from the depth of closure to the new sea level (h _*)	1.86 m
The distance from the top of the dunes to the depth of closure (W_*)	184.57 m
The landward extent of overwash (Y_L)	38.11 m

Bruun Rule Calculation

$$R = \frac{X_c(h)}{d_d + d_c}$$

$$R = \frac{182.88m(0.00342m/yr)}{1.8m + 1.83m}$$

$$R = 0.17m/yr$$

R: Shoreline Retreat

Modified Bruun Rule Calculation

$$R = (W_* + Y_L) \ln(\frac{h_* + d_d}{h_* + d_d - h})$$

$$R = (184.57m + 38.11m) \ln(\frac{1.86m + 1.8m}{1.86m + 1.8m - 0.00342m/yr})$$

$$R = 0.21m/yr$$

Measured Shoreline Data

Time Period	Shoreline Retreat (m/yr)
1937-1954	0.85
1954-1968	1.46
1968-1992	1.25
1992-2007	1.86
1997-2012	3.05

Results

- Bruun and Modified Bruun Rules did not predict the total amount of shoreline retreat – experienced historically
- Suggest of factors are contributing to shoreline retreat:
 - Storm Impacts
 - Frequency of Storm Events
 - Lack of Sediment
 - Condition of shoreline in area of breaches lack of marshes
 - Back Barrier

Beach, Dune and Back-Barrier Restoration Sandy Recovery Project

- Close breaches, Restore dunes
- 1.41 Million cubic yards of sediment
- About 8,900 linear feet
- Create marsh platform (bac-barrier) behind restored dune
 - 60 total acres
 - Extend about 100 to 600 feet into back barrier marsh

Typical Section

Marsh Interior Restoration Sandy Resiliency Project

- Begin to rebuild ecosystem processes
- Improve tidal circulation by creating conveyance channel network
 - ~ 25 Miles of channels -
- Use material from on-site dredging work to restore lost elevation in some areas of the marsh interior (thin-layer application)
 - Kinda.....more of a disposal mechanism
 - ~600,000 cy

Nozzle Designs

Discharge on to Shallow Open Water

Conclusion

- Bruun and Modified Bruun Rules did not account for total shoreline retreat
- Largest Post-Hurricane Sandy Recovery and Restoration Project
- Construction cost \$40 mil
- Restored 5,000 acres of marsh
- Restored 2 miles of shoreline

