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Motivations & Objectives

• Coastal forests – non-intrusive (natural) protection against ocean waves

• How effective can coastal vegetation dissipate incoming wave energy?

• Interactions between waves and vegetation: 

 Physical modeling – rigid/flexible cylinders or live vegetation (Wu et al. 2011, Maza et al. 2015)

 Numerical modeling – N-S models, depth-integrated models (NLSW, Boussinesq-type equations)

 Mathematical modeling – Homogenization theory (Mei et al. 2011, 2014) 

• Previous work:

 Develop a model to estimate wave attenuation by coastal forests of arbitrary shape

 Linear model vs. experimental data (Liu et al. 2015, Chang et al. 2017a, b)

How about nonlinearity?
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Motivations & Objectives

• Previous work:

 Develop a model to estimate wave attenuation by coastal forests of arbitrary shape

 Linear model vs. experimental data (Liu et al. 2015, Chang et al. 2017a, b)

How about nonlinearity?

• Extend the linear model (Mei et al. 2011) – homogenization theory

• Consider the effects of weak nonlinearity

• Investigate the nonlinear effects and harmonic generation

Micro-scale Problem 
< Cell >

Macro-scale Problem
< Wavelength >

Multi-scale 
Perturbation

Flow motion surrounding cylinders Wave dynamics through the forest region
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• Conditions:

 Shallow water: wavelength is much greater than water depth

 Tree spacing is much smaller than the wavelength

 Incident waves: simple-harmonic waves with weak nonlinearity

Periodic shallow-water waves

Constant water depth

Emergent, rigid and vertical cylinders Regular arrangements
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• Governing equations (shallow water):

velocity components

free surface elevation

eddy viscosity

Incident waves: 

simple-harmonic waves with weak nonlinearity

Spatial average

Periodic shallow-water waves

Emergent, rigid and vertical cylinders Regular arrangements

Constant water depth
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• Governing equations (shallow water):

velocity components

free surface elevation

eddy viscosity Spatial average

Periodic shallow-water waves

Weakly nonlinear waves

 Parameters:

Emergent, rigid and vertical cylinders Regular arrangements

Constant water depth
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porosity

 Eddy viscosity (Mei et al. 2011):

Shallow-water wave characteristic velocity

• Governing equations (shallow water):

velocity components

free surface elevation

eddy viscosity Spatial average

Emergent, rigid and vertical cylinders Regular arrangements

Periodic shallow-water waves

Constant water depth
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Unit Cell

Macro-scale Problem Micro-scale Problem

< scale: wavelength> < scale: tree spacing >

dimensionless

Homogenization (multi-scale perturbation theory)

Emergent, rigid and vertical cylinders Regular arrangements

Constant water depth



Cornell University

• Micro-scale (cell) problem - NONLINEAR

o Summation of different harmonics

complex conjugate of 

Harmonic generation

Macro-scale pressure gradient

Dimensionless eddy viscosity:

 Boundary conditions:

Nonlinear B.V.P – Unknowns: and

Leading-order problem



Cornell University

• Micro-scale (cell) problem - NONLINEAR

Leading-order problem

 Modified pressure correction method – iteration

Macro-scale pressure gradient (GIVEN)

Dimensionless eddy viscosity

Pseudo-time derivative

if convergent

 Finite difference with staggered discretization:
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• Macro-scale (wavelength-scale) problem

Leading-order problem

o Complex coefficients: Cell problem solutions

cell-averaged quantity

 Forest region for each harmonic – LINEAR

 Open water region for each harmonic – LINEAR
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• Micro-scale problem:

Leading-order problem

• Macro-scale problem:

Initial Guess Linear solutions

Solution OutputConvergent ?

Solve micro-scale problem

Yes

Solve macro-scale problem

Update macro-scale solution

No

Driven Force

Macro-scale pressure gradient

Cell problem solutions
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 Forest region:

 Open water:

• Macro-scale (wavelength-scale) problem

Long waves through a forest belt

 Matching conditions: 

Incident waves

Mean water level of incidence region = constant
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• Case 1: 

Solid line — upper wave envelope

Circles — linear model solution Snapshots of wave solutions

Long waves through a forest belt

wave setup
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Relative difference: ≈ 10%
Long waves through a forest belt

Snapshots of wave solutions

wave setup

• Case 2: 

Solid line — upper wave envelope

Circles — linear model solution
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Long waves through a forest belt

Reflection coefficient: Transmission coefficient:
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Long waves through a forest belt

Reflection coefficient: Transmission coefficient:
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• Micro-scale problem: 

 The numerical model for solving micro-scale nonlinear problem is developed

 Boundary-fitting discretization is needed for improvement

• Macro-scale problem: 

 Higher harmonics are generated and radiated into outside region

 The first harmonic is dominant and higher harmonics have smaller amplitude

 Lack of gauge data for shallow-water waves

o Model extension for taking vertical variation into account is needed

o The use of drag coefficient and eddy viscosity will be made

o More gauge data are available for model validation

Summary
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