

36TH INTERNATIONAL CONFERENCE ON COASTAL ENGINEERING 2018

Baltimore, Maryland | July 30 - August 3, 2018

The State of the Art and Science of Coastal Engineering

LIVING BREAKWATERS - Designing for Resiliency

Paul Tschirky, PhD, PEng, D.CE

Geosyntec Consultants

Pippa Brashear

SCAPE Landscape Architecture DPC

Ido Sella, PhD

SeArc Ecological Marine Consulting

Todd Manson, PE

COWI

Designing for Resilience

"resilience" not just rebuilding

REBUILD BY DESIGN

Designing for Resilience

design + ecology + engineering

Resiliency - the ability of a natural or built system to recover from an extreme load or event.

REQUIRES:

- Multidisciplinary Collaboration
- Multilayered Solutions

Designing for Resilience

RISK REDUCTION

- ATTENUATE STORM WAVES
- REDUCE OR REVERSE LONG
 TERM EROSION
- REDUCE EVENT-BASED EROSION

ECOLOGICAL ENHANCEMENT

- CREATE HABITAT
- INCREASE BIODIVERSITY
- IMPROVE ECOSYSTEM HEALTH

SOCIAL RESILIENCY

- IMPROVE ACCESS TO THE SHORELINE
 & NEARSHORE WATERS
- RAISE AWARENESS OF RISK
- ENCOURAGE STEWARDSHIP

Modeling and Design Integration

modeling design components

SYSTEM LAYOUT:

- shoreline retention or growth / reduced erosion
- wave attenuation

BREAKWATER STRUCTURE:

- wave and current conditions at the breakwaters
- stability of various rock sizes
- stability of unique design elements (crenelated crests, reef ridges)
- scour potential at breakwater toe

ECOLOGICAL:

- sedimentation, flow patterns, velocities in and around the breakwater and reef streets
- placement of treatments

Modeling and Design Integration

modeling approach and models

APPROACH:

Model simple to complex -- to allow testing of multiple concepts early and refine details later (this also fostered collaboration and innovation)

Concept --- Design --- Test --- Analyze --- Iterate

MODELS:

- Waves (SWAN, REFDIF, Funwave)
- Shoreline change (GENESIS)
- Sediment movement (Delft3D)
- Water quality changes / tidal flushing (Delft3D)
- Detailed flows and sediment movement for ecological design (Flow3D)
- Structural stability (Physical)
- Confirmation and wave attenuation (Physical)

Risk Reduction

RISK REDUCTION

- ATTENUATE STORM WAVES
- REDUCE OR REVERSE LONG TERM EROSION
- REDUCE EVENT-BASED EROSION

Hydrodynamic Conditions

driving forces

- Storm surge 12.9 ft NAVD88 (1% annual chance)
- **Sea level rise** 30" (medium projection for 2080, high projection for 2050)
- **Storm waves** 5.3 ft, 5 s (Hsig, 1% annual chance event)
- Normal tidal range ~5 ft

Driving Forces

waves

Modeling

Understanding the wave climate

Offshore Wave Data

developing input data sets

- wave transformation modeling
- 30 years of hourly data

Nearshore Wave Climate

Modeling

shoreline change
(erosion reduction)

Tested 15+ different layouts.

Modeled changes after 20 years.

Modeling

wave attenuation

- risk reduction
 - reduce waves particularly along shoreline where vulnerable infrastructure and buildings are located in high energy wave zones

Modeling to Confirm Details

sediment motion, tidal flushing (water quality)

Ecological Enhancement

ECOLOGICAL ENHANCEMENT

- CREATE HABITAT
- INCREASE BIODIVERSITY
- IMPROVE ECOSYSTEM HEALTH

Ecological Enhancement

target species groups

Ecological Design

ecology thrives in complexity

MAIN BREAKWATER SEGMENT

Detailed modeling

testing ecological elements

3D CFD model

<u>GRID</u>

Range from 0.25 to 2.5 ft

> **2.5M** cells

FLOW PATTERNS AND VELOCITIES

Flood and Ebb Tides

Velocity (ft/s)

Ecological Units

bio-enhancing concrete armor units and tide pools

- function structurally as armor stone
- promotes the recruitment of marine plants and animals through science based chemical composition (eliminating and replacing certain negative elements within the concrete mix) and physical design (providing complex micro-surfaces)

Physical Modeling

testing unique features

Before Testing

Cumulative Damage after Testing

Design Layout

shoreline retention, wave attenuation, varied breakwater types, ecology

Ecological Treatment Layouts

habitat now, science for the future

Social Resilience

SOCIAL RESILIENCY

- IMPROVE ACCESS TO THE SHORELINE
 & NEARSHORE WATERS
- RAISE AWARENESS OF RISK
- ENCOURAGE STEWARDSHIP

2018

Thank You!

Living Breakwaters Design Team

