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Motivation

« Debris impact and damming forces have
been identified as a significant loading
condition in extreme hydrodynamic events
(Robertson et al., 2007; Palmero et al.,
2009; Chock et al., 2013).

» Focus of research has primarily been on the
Impact forces.

» Less emphasis on the risk associated with

debris motion.
» ASCE 7 Chapter 6 first document that
explicitly addressed debris motion.
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Motivation

 Difficult to quantify debris motion:

« Tsunami forensic field surveys
 Tsunami are rare events
 Difficult to assess debris sources

* Numerical
« Computationally expensive
» Lack of sufficient benchmarking

« Physical modelling
« Time-consuming
« Scaling issues

Objectives
Develop a quick and accurate method to track
debris in energetic flow conditions.

Validate the current provisions of the ASCE7
Chapter 6 standard for debris hazard assessment.
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Chock, Gary YK. "Design for tsunami loads and effects

ASC E 7 C h apte r 6 in the ASCE 7-16 standard." Journal of Structural
] Engineering 142.11 (2016): 04016093.
Tsunami Loads and Effects

 First standard, written in mandatory
language, for tsunami loading on

structures in North America.

Minimum Design Loads and
Associated Criteria for

« Addresses tsunami loading from a Buildings and Other Structures
probabilistic perspective.

» Touches on three aspects related to
debris loading:
« Debris Loading Potential
* Debris Impact Loading
» Debris Damming (to a lesser extent)
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Inflow Region

Debris Hazard Assessment
« Naito et al. (2014)

« Naito, Clay, et al. "Procedure for site assessment of the
potential for tsunami debris impact." JWPOCE 140.2 (2013):
223-232.

Design Site

il

* Based on a site assessment after the 2011 Tohoku Tsunami.

 Focused on debris with a defined source.
» Shipping vessels.

Debris Source

Limitations

 Limited data set. _ Average Shore
Shoreline Normal

« Could only be performed — " —

in the aftermath.
e Unclear debris source.
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Experimental Setup

* Experiments were performed in new Tsunami Wave
Basin at Waseda University (Tokyo, Japan).

9000mm

5000mm

500mm 3950mm ‘ 4550mm

Wave l\‘/laker
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Experimental Setup

1:40 geometric scaling

Ability to track the debris with 6 degrees-of-freedom.
Bluetooth Low Energy (BLE) Tags for debris tracking
Inertial Measurement Units (IMU) for debris
acceleration and rotation
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Optlcal Tracking Algorithm

For tracking debris in the individual 0
|
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Debris Displacement
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Debris Displacement

4.5
| | | | " Standard deviation
4k 95% Confidence interval
. . ——Mean of the data
B — » Raw data
9:9 Lol ; ~ — - Nistor et al. (2016)
N e — K - VO SO V— -
‘T 25 2 " i
c i — ’
S Ll » P ]
© Ca
. gy :
1 o
. i
0.5 . -
| | | | |
0 No Obstacles One Row Two Rows No Obstacles Two Rows of Obstacles
of Obstacles of Obstacles (Downstream) (Downstream)

36TH INTERNATIONAL CONFERENCE
ON COASTAL ENGINEERING 2018

Baltimore, Maryland | July 30 — August 3, 2018




Debris Spreading
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Debris Spreading
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Conclusions

« Developed two methods of capturing debris
motion in energetic flow conditions.
» Video tracking algorithm had superior
accuracy and fewer limitations than the
sensor-based technology.

Next Steps

» Develop a probabilistic framework for
assessing debris transport in extreme flooding

. : _ conditions.
» Longitudinal displacement a function of the
energy dissipation in the wave. « Improve upon current tracking techniques to
» Caused by debris-debris interactions as well expand application to the wider fields of coastal
as flow resistance from obstacles. and hydraulic engineering.
» Debris spreading angle well within the * Investigate scale effects related to solid body
ASCE7 Chapter 6 provisions. transport under hydraulic forcing.

» Presence of obstacles had no significant
influence on spreading angle.
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Thank you for your attention!

loan Nistor
University of Ottawa, Ottawa, Canada
Email: inistor@uottawa.ca
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