Tsunami Generation by Earthquakes: Sea Bed Topography and Inertial Effects

Robert A. Dalrymple(JHU, NU)Morteza Derakhti(APL, UW)Emil Okal(E&PS, NU)Costas Synolakis(C&EE, USC)

 10^{-1}

 10^{-2}

3

 10^{-2}

10

 $\eta_m/$

Genesis of the Paper

Bus ride with Costas Synolakis at the 35th ICCE in Turkey.

Purpose: Originally, to examine the effect of shape of bottom displacement on the initial water surface displacement.

Later, to examine the importance of fluid inertia over the source area and possible ballistic behavior of the water.

Initial Surface Displacement

Most tsunami propagation models assume that the surface displacement is the same as the bottom displacement, although it is known that it must be different (e.g., Kajiura, 1963; Saito and Furumura, 2009)

If rate of displacement is slow, then no response of the free surface.

Weakly compressible SPH (single/multi-fluid) SPS viscosity, k-epsilon Homogeneous accuracy (Hérault et al., 2014) CUDA C++ Multi-node, multi-GPU Project Chrono (moving bodies)

(50 particles over the depth; actual sound speed)

Simple Piston Bottom Motion, $0 < t < t_r$

Red (solid) lines correspond to Hammack (1973) experiment

Comparison to Experiments

Impulsive cases: small & large amplitude

Water Surface Overshoot, $\eta(0)/\xi_m > 1$

Suction at edge of uplift zone for mass conservation Data from Hammack (1973) Black line: $\Delta p = 0.01h$ Red dashes: $\Delta p = 0.02h$

Surface Displacements

Max Water Surface Displacement vs Rise Time, tr

$$t_c = b/\sqrt{g(h - h_s)}$$

$$\gamma = \mathcal{W}_m^2/(2g\xi_m)$$

velocity head

$$F = (1 + \alpha_1 \gamma^2) (\frac{1}{1 + \alpha_2 \tau^{\alpha_3}}) (\frac{1}{1 + \alpha_4 \tau^{\alpha_5} \gamma^{\alpha_6}}) \text{ with } \alpha_i = [0.9, 0.08, 2.1, 2, 1.6, 1.25]$$

 $\begin{array}{ll} \mbox{For very small } \tau & \mbox{For very small } \gamma \\ F_{\tau} = (1 + \alpha_1 \gamma^2) & \mbox{} F_{\gamma} = \frac{1}{1 + \alpha_2 \tau^{\alpha_3}} \\ \mbox{For very large } \tau & \mbox{For very large } \gamma \end{array}$

 $F \rightarrow 0$

 $F = (1 + \alpha_1 \gamma^2) \left(\frac{1}{1 + \alpha_2 \tau^{\alpha_3}}\right)$

Horizontal Volume Flux

Effect of Displacement Shape

Is water surface displacement same as bottom displacement? What is the effect of shape of bottom displacement?

Case no.	<i>h</i> (m)	b_0/h	h_0/h	b_s/b_0	h_s/h	S	ξ_m/h	a_m/g	au	$ au_s$
A1	200	10.0	1.0	1.00	1.0	0.0	0.10	0.81	0.08	0.08
A2	200	10.0	1.0	0.96	0.6	1.0	0.10	0.81	0.08	0.06
A3	200	10.0	1.0	0.94	0.4	1.0	0.10	0.81	0.08	0.05
A4a	200	10.0	1.0	1.00	0.3	0.0	0.10	0.81	0.08	0.04
A4b	200	10.0	1.0	0.93	0.3	1.0	0.10	0.81	0.08	0.04
A4c	200	10.0	1.0	0.80	0.3	1.0	0.10	0.81	0.08	0.05
A4d	200	10.0	1.0	0.70	0.3	1.0	0.10	0.81	0.08	0.05
A4e	200	10.0	1.0	0.50	0.3	1.0	0.10	0.81	0.08	0.06
A4f	200	10.0	1.0	0.25	0.3	1.0	0.10	0.81	0.08	0.07
A5	200	10.0	1.0	0.92	0.2	1.0	0.10	0.81	0.08	0.04
<i>B</i> 1	200	5.0	1.0	1.00	1.0	0.0	0.10	0.81	0.16	0.16
<i>B</i> 2	200	5.0	1.0	1.00	0.6	0.0	0.10	0.81	0.16	0.12
B3a	200	5.0	1.0	1.00	0.4	0.0	0.10	0.81	0.16	0.10
B3b	200	5.0	1.0	0.88	0.4	1.0	0.10	0.81	0.16	0.10
B3c	200	5.0	1.0	0.70	0.4	1.0	0.10	0.81	0.16	0.11
B3d	200	5.0	1.0	0.50	0.4	1.0	0.10	0.81	0.16	0.13
B3e	200	5.0	1.0	0.25	0.4	1.0	0.10	0.81	0.16	0.14
B3f	200	5.0	1.0	0.40	0.4	5.0	0.10	0.81	0.16	0.12
B4	200	5.0	1.0	1.00	0.3	0.0	0.10	0.81	0.16	0.09
B5a	200	5.0	1.0	1.00	0.2	0.0	0.05	0.81	0.11	0.05
B5b	200	5.0	1.0	1.00	0.2	0.0	0.10	0.81	0.16	0.07
B5c	200	5.0	1.0	0.84	0.2	1.0	0.10	0.81	0.16	0.08
B5d	200	5.0	1.0	0.67	0.2	1.0	0.10	0.81	0.16	0.10
B5e	200	5.0	1.0	0.50	0.2	1.0	0.10	0.81	0.16	0.11
B5f	200	5.0	1.0	0.25	0.2	1.0	0.10	0.81	0.16	0.13
B5g	200	5.0	1.0	0.50	0.2	3.0	0.10	0.81	0.16	0.10
B5h	200	5.0	1.0	0.20	0.2	5.0	0.10	0.81	0.16	0.11
C1 - C3	200	5.0	1.0	1.00	1.0, 0.4, 0.2	0.0	0.10	0.081	0.5	0.5-0.2
D1 – D3	200	5.0	1.0	1.00	1.0, 0.4, 0.2	0.0	0.10	0.020	1.0	1.0-0.4
E1 - E4	200	5.0	1.0	1.00	1.0, 0.6, 0.4, 0.2	0.0	0.10	0.005	2.0	2.0-0.9
F1 - F4	200	2.0	1.0	1.00	1.0, 0.6, 0.4, 0.2	0.0	0.10	0.005	5.0	5.0-2.2
G1, G2	200	1.0	1.0	1.00	1.0, 0.2	0.0	0.05	0.0025	10.0	10.0,4.5
H1, H2	200	1.0	1.0	1.00	1.0, 0.2	0.0	0.05	0.0005	22.0	22.0,9.8
<i>I</i> 1, <i>I</i> 2	200	0.25	1.0	1.00	1.0, 0.2	0.0	0.05	0.0005	88.0	88.0,39.4

Different Initial Sill Heights, Impulsive Case

 $b_s/b_0 = 1$ and $h_0/h = 1$

Different Initial Sill Heights, Creeping Case

 $b_s/b_0 = 1$ and $h_0/h = 1$

Varying Sill Width: $\overline{b_s} = b_s + s(h_0 - h_s)/2$

Asymptotic Relationship

Asymptotic Relationship

Far Field Leading Wave

Sea Quakes

Martin, O.L. (1962)

Conclusions/Possibilities

Tsunami over the source very different than that assumed

Large uplift velocities lead to larger waves over source

Far-field wave mostly affected by volume of water over source

Seaquakes are real: P and S wave effects

But also sound waves and inertial loading Cavitation possible with high uplift velocity Water hammer effect? Loss of buoyancy over source?