Empirical and numerical modal analysis of coastal areas prone to tsunami risk

G. Bellotti¹, A. Romano²

¹ Roma Tre University, ² Sapienza Università di Roma

The importance of the modal response (natural modes) on tsunami amplification

• Shelf effects

T=41.67 min, f=1.44 c/h, ζ=4.56e-001 h⁻¹

2S

Edge waves generated by landslides?

Index of the presentation

- Brief description of the experimental layout
 - Laboratory experiments with moveable wave gauges
- k-f analysis for the trapped waves
- EOF analysis for the trapped waves
- Numerical modal analysis

The conical island: a small simplified Stromboli

The physical model represents a truncated conical island (base radius 4.45 m). The slope of the island's flanks is 1:3 (1 vertical, 3 horizontal). A flat slope (0.5 m wide) allows the model to slide along the flank and to enter the water. The physical model roughly reproduces the small volcanic island Stromboli (South Tyrrenian Sea, Italy) in a Froude law scale (1:1000).

Landslide model

Technical University of Bari (Italy)

The run-up gauges

A movable arm to change the position of wave gauges

13 wave gauges are installed on a <u>rotating</u> <u>arm</u>, which is placed at the island center. An electric engine, remotely-controlled rotates it along an angular sector of **180°**, with steps of **5°**.

A movable arm to change the position of wave gauges

 θ = Angle between the path of the landslide and the rotating arm

Each experiment is repeated 37 times.

After each test the arm has been rotated by 5°.

The arm position has been carefully measured by a theodolite.

Once the repeatibility of the experiments is ensured, more than **500** punctual free surface elevation time series are available

Animation of the results

Edge waves travelling around the island?

Wavenumber-frequency (k-f) analysis of the results

The run-up time series are processed to obtain

The wave energy distribution in the k-f domain

Romano A., Bellotti G., Di Risio M. (2013). Wavenumber–frequency analysis of the landslide-generated tsunamis at a conical island. Coastal Engineering, vol. 81, pp. 32-43.

Wavenumber-frequency (k-f) analysis of the results

The 1D k-f, applied to the run-up time series, shows that the waves propagate along the shore as a **0**th-order edge waves packet</sup> or Stokes edge waves (*Ursell, 1952*).

The empirical orthogonal function method

It is possible to calculate the amount of variance λ_n explained by each mode

The spatial modes calculated by the EOF method

Further processing the EOF modes

Each EOF mode can be associated to one peak frequency and one peak wavenumber

EOF and k-f results

Numerical modal analysis results

Numerical modal analysis results processed and plotted in the k-f plane

Each numerical mode is represented by a point. Here no information on the size/importance of the modes as the model simulates free (unforced) oscillations

Comparison of the methods

Conclusions

- Three methods for modal identification applied to experimental landslide tsunamis:
 - K-f spectral analysis, non information on the spatial shape of the modes
 - EOF spatial shape, k, f and relative importance (i.e. variance explained)
 - Numerical modal analysis: free response, no information on the importance of the modes
- Results in good agreement
- Edge waves (zeroth mode) dominate the wave propagation around the island

References

Movable arm experiments:

Romano A., M. Di Risio, G. Bellotti, M. G. Molfetta, L. Damiani, P. De Girolamo (2016). Tsunamis generated by landslides at the coast of conical islands: experimental benchmark dataset for mathematical model validation. Landslides, pp. 1-15.

<u>Benchmark data available</u>

k-f analysis:

Romano A., Bellotti G., Di Risio M. (2013). Wavenumber–frequency analysis of the landslide-generated tsunamis at a conical island. Coastal Engineering, vol. 81, pp. 32-43.

EOF analysis:

Bellotti G., Romano A. (2017). Wavenumber-frequency analysis of landslide-generated tsunamis at a conical island. Part II: EOF and modal analysis. Coastal Engineering, vol. 128, pp. 84-91.

Submerged landslides:

Tsunamis generated by submerged landslides at a conical island: experimental and numerical analysis (in preparation)

Estimate of the wave group celerity

The theoretical group wave celerity, as from the edge waves theory for the 0-th mode, is in very good agreement with the experimental one.

$$s = r \theta$$

Estimate of the wave phase celerity

The experimental phase wave celerity of the first three waves that form the packet (c^*_{1w} , c^*_{2w} , c^*_{3w}) has been calculated as from the zero-crossing analysis, while the theoretical one has been obtained (c) by the edge waves dispersion relation.

represents the distance from the impact point, measured along the shoreline

 \boldsymbol{S}