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Motivation: Does wave breaking warm up
coastal waters?

« Breaking waves dissipate the incident wave energy.

* The law of energy conservation indicates that some ==
of the dissipated wave energy would be transformed -
Into heat. K

« Can we measure or model the warm-up of coastal
waters due to wave energy dissipation?

Wave breaking over a beach (Clark et al., 2011)

v Sinnett & Feddersen (2014) analyzed the surf zone heat budget and found that
surf zone heating due to wave energy flux is important!

¢ This study investigates surf zone heating due to the energy dissipation of
breaking waves by using the Smoothed Particle Hydrodynamics (SPH) method.

Sinnett & Feddersen, 2014. The surf zone heat budget: the effect of wave breaking. Geophysical Research Letters. 41, 7217-7226.



GPUSPH modeling of coastal processes

GPUSPH is an open-source implementation of the weakly compressible SPH method
on GPUs (www.gpusph.orqg) [GPUSPH v4.1 was outl].

A few examples ...
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Tsunami-structure interaction (Wei et al., 2015, 2016; Wei & Dalrymple, 2016)

CSIDevice under directional spectral waves 1Hs =20m, Tp =4.95) by GPUSPH. Time = 26.2 s
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Nearshore circulation (Wei et al., 2017) Wave energy converters (Wei et al., in preparation)


http://www.gpusph.org/

What do you mean by “surf zone heating”?

“Surf zone heating” means the increase in water temperature in the surf zone.

Do you compute the increase/generation of temperature?
*» No, this study does not solve the temperature as unknown directly, but
rather we examine the increase of internal energy in the water body. Why?
+» To ensure the conservation of energy

The first law of thermodynamics: AU =Q — W
where AU is the change of internal energy; Q is the heat; W is the work

This study considers a “thermally isolated system”, which does not exchange
mass flow and heat energy. As a result, the increase of internal energy in the
wave basin is solely due to the incident wave energy offshore.



Governing equations

Mass & momentum conservation of weakly compressible SPH (e.g., Dalrymple

& Rogers, 2006) Dp
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where 7 1s the time; p is the fluid density; u is the particle velocity; P is the pressure; U is the particle internal
energy (unit: J); m is the particle mass; g i1s the gravitational acceleration; vy i1s the laminar kinematic
viscosity; and 7 1s the turbulence stress tensor; and ¢, is the specific heat capacity (unit: J/(Kg Kelvin)).
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Numerical experiments

Regular wave breaking over a planar beach
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| 0484 0.176 1.0 151 2.02 029 spilling breaker

2 0484 0.138 1.7 330 093 0.54 weakly plunging breaker

* 2D (or long-crested) waves.

* The planar beach slope is 0.1.

* The numerical wavemaker is placed at one wave length away from the beach toe.

« Both spilling breaker and weakly plunging breaker are considered based on the surf
similarity parameter (¢ = ——=%_) of Battjes (1975).
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Long-crested waves breaking over a beach

Regular wave breaking over a planar beach (h =0.484 m, H=0.176 m, T = 1.0 s, kh = 2.02, CO =0.29). Time =20.0 s
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Surf zone heating

Regular wave breaking over a planar beach (h =0.484 m, H=0.176 m, T = 1.0 s, kh = 2.02, Co =0.29). Time =20.0 s
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* (1) Internal energy generation mainly in the surf zone; (2) internal energy increases over time; (3) beach
heating due to intermediate-depth waves & dissipative numerical beach (zero velocity at wall boundary)




Surf zone heating (Temperature)

« Temperature (T) can be estimated from internal energy (U) by
U
Cp -m

where m is the particle mass, and cp is the specific heat capacity.

T =

Regular wave breaking over a planar beach (h =0.484 m, H=0.138 m, T=1.7 s, kh = 0.93, CO =0.54). Time =34.0 s
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Surf zone energy budget

. L |
* Incident wave energy flux per unit width: F. =EC, = gngZCg
I 1 2kh
Where E = gng y Cg:nC: 5(14‘@)
1 DU,
* Internal energy increase rate per unit width: Fi =

where L, is the basin width, y, - ZU

* Energy budget was estimated by averaging 10 waves (i.e., from 20T to 30T) when
surf zone process is relatively stable.

* The incident wave energy is fully converted into internal energy of the system.
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Undertow: the carrier of heat offshore

Mean current field under regular wave breaking over a planar beach (h =0.484 m, H=0.138 m, T = 1.7 s, kh = 0.93, CO =0.54).
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Regular wave breaking over a planar beach (h=0.484 m, H=0.138 m, T = 1.7 s, kh = 0.93, CO =0.54). Time =51.0s
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« Undertow transports internal energy offshore and (partially) contributes to the increase of
internal energy near the basin bottom.
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Short-crested waves in the surf zone

Short-crested wave breaking over a beach (h =05m, H=03m, T = 2 5) by GPUSPH.Time = 80.0 s

We generated short-crested

waves by intersecting wave

trains, and we observed:

 Isolated breakers

« wave amplitude diffraction

« Wave-driven currents, e.g.,
undertows & rip currents

« Complicated nearshore
circulation pattern
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Wei, et al., 2017. Short-crested waves in the surf zone. JGR: Oceans. https://doi.org/10.1002/2016JC012485.



Surf zone heating driven by short-crested wave breaking

Increase in internal energy under short-crested wave breaking (h=05m, H=03m, T=2 s) * Internal energy generatlon In the
e | g ST breaking region; it mainly follows

the trajectory of isolated breakers
* Internal energy increases over
time
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i - Wave-driven currents transport
- internal energy, in particular,
12 2 internal energy is transported
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] Time- and depth-averaged current field colored by mean
Internal energy profile at the free surface from 25T to 35T. vertical vorticity (Fig. 8 (b) of Wei et al., 2017).



3D distribution of water heating under waves
lncn"ease in inle‘mal enel‘gy‘ under breaking waves at sect@ time = 56.00 s
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Summary

O Breaking of water waves in the surf zone generates heat (or increases
the internal energy of the water body)

O The dissipated incident wave energy is fully converted into the internal
energy in a closed system as used in the present study

O Wave-driven currents (e.g., undertows and rip currents) transport the
generated heat from the surf zone to offshore area



Thank you for your attentions!
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