Flood risk reduction using vegetated foreshores

Vincent Vuik Delft University of Technology, The Netherlands

Vegetated foreshores

Vegetated foreshores

Study site

- 1. Evidence for wave load reduction
- 2. Failure probability of a dike with foreshore
- 3. Cost effectiveness

Christmas Flood 1717

Christmas Flood 1717

Marsh width class: C1 = 0 - 100 m; C2 = 100 - 650 m; C3 = 650 - 1200 m

Zhu et al. (2018) in prep.

Christmas Flood 1717

 Zhu et al. (2018)
 Bed level
 O Wave run-up

 (m MSL) 0
 0.5
 1
 1.5
 2

 in prep.
 (m MSL) 0
 0.5
 1
 1.5
 2

1.0 field $H_s = 0.5h$ 18 flume G Н 0.8 22 significant wave height (m) В 23 new measurements 0.6 16 at 3 sites 14 0.4 9 14 10 15 17 1 0.2 8 Vuik et al. (2016) 52 19 7 20 3 Coastal Eng. 0.0 0.5 1.5 2.0 2.5 3.0 1.0 12 water depth (m)

Wave run-up

Wave run-up

 Zhu et al. (2018)
 Bed level
 Wave run-up

 (m MSL) 0
 0.5
 1
 1.5
 2

 in prep.
 (m MSL) 0
 0.5
 1
 1.5
 2

Physical processes

Failure probability calculation

Limit State Functions

Wave overtopping

EurOtop (2016) vs. tolerable discharge

Asphalt (fatigue)

Actual vs. tolerable number of waves

Grass (erosion)

Storm duration vs. 1/(erosion rate)

Probability of failure

17

Probability of failure

18

Long-term cost effectiveness

Design alternatives

- (0. do nothing)
- 1. dike heightening
- 2. salt marsh construction
- 3. foreshore with high zone
- 4. brushwood dams

Total Costs = Investments + Expected Damage

Total Costs = Investments + Expected Damage = $I + P_f D$

- Investments (*I*):
 - Dike heightening by 1 m: 5.4-14.9 M€/km
 - Dredging & nourisment:
 2.4-7.0 €/m³
 - Earthmoving: 4.6-15.4 €/m³
 - Brushwood dams:
 22 €/m¹

Total Costs = Investments + Expected Damage = $I + P_f D$

- Expected damage = $P_f D$
- Failure probability *P_f* in time, affected by:
 - Sea level rise: IPCC RCP8.5
 - Foreshore dynamics
- Damage: determines attractiveness of investments

Foreshore elevation

Failure probability in time

 $- \Theta$ dike, 6 m MSL $- \Theta$ fs nourishment $- \times$ fs + high zone - Θ - dike 1 m higher $- \Rightarrow$ fs + breakwater $- \ast$ brushwood dams

Total Costs = Investments + Expected Damage

Sum over time (1996-2100, from IPCC) of Net Present Value of Total Costs: $\Sigma(I+P_f D)$

Economically most attractive alternative: minimum NPV of Total Costs: min{ $\Sigma(I+P_f D)$ }

Conclusions

- Foreshores reduce wave height, wave run-up and dike failure probabilities
- Natural foreshores are limited in effectiveness by their maximum elevation around MHW
- Using natural foreshores can be economically attractive when dike heightening is too expensive
- Artificial foreshores can be more cost-effective than dike heightening

Thanks to

Vincent Vuik V.Vuik@tudelft.nl

Contributions: Bas Jonkman, Bas Borsje, Zhenchang Zhu