

An experimental study of extreme wave kinematics on opposing depth-varying currents

Xuyang Niu, Yuxiang Ma, Xiaozhou Ma, Guohai Dong, Yongbo Song

State Key Laboratory of Coastal and Offshore Engineering

Dalian University of Technology

Dalian, China

Contents

1. Background

- 2. Experimental setup
- **3. Results and Discussion**
- 4. Conclusion

Page 1/15

1. Introduction: Extreme wave

Extreme wave Extraordinarily large wave Damages of ships and ocean structures Kinematics of extreme waves

Extreme wave (New Year Wave, Hmax/Hs=2.15)

Photos of destructive extreme waves

1. Introduction: Depth-varying current

Waves are always coexisting with depth-varying currents

1CCE 2018

Schematic of the experimental set-up

- Wave flume length: 20m
- Water depth: 0.4m

Wave generation:

• Piston-type wave maker

Currents generation:

- Controllable pump
- Flow conditioner
- Flow straighter

Surface elevation:

• Capacitance-type wave gauges

Velocity field:

• PIV system

2. Experimental setup

Velocity field measured by PIV system

Wave parameter

	A(cm)	Spectrum	Components	$f(\mathrm{Hz})$	Wave case
Extreme waves generated by	3				A3
dispersion focusing method	4	JONSWAP	32	0.8-1.2	A4
Daga	5				A5
Page					

PIV system

- Dual pulse Vlite-200 YAG laser
- CCD camera: 1340×1192 pixels
- Field of view $50 \text{ cm} \times 50 \text{ cm}$
- Interrogation window 64×64 pixels

2. Experimental setup

JCCE 2018

Flow conditioner apparatus

Current parameter					
Current case	Surface velocity (m/s)	Current Shear (s ⁻¹)			
Uniform current U9	-0.09	0			
Shear current US9	-0.09	0.225			
Uniform current U15	-0.15	0			
Shear current US15	-0.15	0.375			

Velocity profiles of the currents

Page 6/15

The video of the extreme wave crest

JCCE 2018

The evolution of surface elevation without current

Page 7/15

Extreme wave elevation and spectrum

Models to depict the kinematics below extreme wave crests

$$\square \text{ Linear model } u^{tot}(z) = \sum_{i=1}^{N} u_i^{(1)}(z)$$

□ Second-order irregular model

$$u^{tot}(z) = \sum_{i=1}^{N} u_i^{(1)}(z) + \sum_{i=1}^{N} \sum_{j=1}^{N} u_{i,j}^{(2,sum)}(z) + \sum_{i=1}^{N} \sum_{j=1}^{N} u_{i,j}^{(2,diff)}(z)$$

□ Characteristic parameters model

u^{tot}	(z)	$=u_{c}^{(1)}$	$(z)+\iota$	$u_{\rm c}^{(2)}(z)$	$+\cdots+u_{a}^{b}$	(5) (z)
-----------	-----	----------------	-------------	----------------------	---------------------	---------

Model	Height	Period
А	H_1	T_1
B (Grue's method*)	H_1	2*T ₂
С	2*H ₂	2*T ₃

Definition of characteristic parameters

*Grue, J., Clamond, D., Huseby, M. and Jensen, A., 2003. Kinematics of extreme waves in deep water. Applied Ocean Research, 25(6): 355-366

Horizontal velocities without current

Horizontal velocities below extreme wave. (measured velocity, linear and second order model)

Horizontal velocities below extreme wave. (measured velocity and characteristic parameters model)

Page 10/15

Stretched velocity Current velocity

Page 11/15

1CCE 2018

Horizontal velocities on opposing currents

Horizontal velocities below extreme wave crests on depth-uniform and depth-varying currents

depth-uniform current Us = -9 cm/s , dU/dz = 0depth-varying current Us = -9 cm/s , dU/dz = 0.225

Page 14/15

Adverse currents increase the heights of extreme wave crests

- 5th-order Stokes solution based on Grue's method fits well with measured kinematics without current.
- The influence of shear currents on extreme waves is far more than linear correction.

The velocity near the surface hardly depends on the vorticity in the water

Thank you for your attention

E-mail: niuxuyang@mail.dlut.edu.cn

STATE KEY LABORATORY OF COASTAL AND OFFSHORE ENGINEERING

