

36TH INTERNATIONAL CONFERENCE ON COASTAL ENGINEERING 2018

Baltimore, Maryland | July 30 – August 3, 2018

A unified runup formula for breaking solitary and periodic waves on a uniform beach

Yun-TaWu, PhD [ceewyt@nus.edu.sg]

Research Fellow, Department of Civil and Environmental Engineering, National University of Singapore

Philip Li-Fan Liu, ScD

Distinguished Professor, Department of Civil and Environmental Engineering, National University of Singapore

Kao-Shu Hwang, PhD

Senior Research Fellow, Tainan Hydraulics Laboratory, National Cheng Kung University, Taiwan

Hwung-Hweng Hwung, PhD

Emeritus Professor, Department of Hydraulic and Ocean Engineering, National Cheng Kung University, Taiwan

IWDRC,NCKU 國立成功大學國際波動力學研究中心 INTERNATIONAL WAVE DYNAMICS RESEARCH CENTER

Outline of the presentation

- Motivation of the study
- Surf parameters for solitary and periodic waves
- Solitary wave runup
- Unified runup formula for solitary and periodic waves
- Conclusions

Motivation of the study

- Understanding wave induced runup processes and predicting the maximum runup height are of great importance for coastal management.
- Studying breaking waves on beaches has been an active research area in coastal engineering community.

 \rightarrow Runup of solitary and periodic waves

Surf parameter for solitary waves

• Leading order solution for a solitary wave with wave height, H_0 , propagating in a constant depth, h_0 , (Boussinesq, 1871):

 $\eta(x,t) = H_0 sech^2[K(x-ct)]$, where $K = \sqrt{3H_0/4h_0^3}$ and $C = \sqrt{g(h_0 + H_0)}$

- Based on the theory of <u>Carrier and Greenspan (1958)</u>, <u>Synolakis (1987)</u> derived an analytical breaking criterion for solitary waves on a uniform slope: $\frac{H_0}{h_0} > 0.8183s^{\frac{10}{9}} \text{ or } s(\frac{H_0}{h_0})^{-\frac{9}{10}} < (0.8183)^{-\frac{9}{10}} \approx 1.20$
- <u>Lo et al. (2013)</u> defined the surf parameter for solitary waves: $\xi_s = s(\frac{H_0}{h_0})^{-\frac{9}{10}}$

Surf parameter for periodic waves

• Following the same approach and the definition of wave breaking for solitary wave proposed by Synolakis (1987), <u>Madsen and Schäffer (2010)</u> derived the wave breaking criterion for sinusoidal waves on a uniform slope as:

$$\checkmark \frac{A_0}{h_0} > \frac{1}{2\sqrt{\pi}} \left(\frac{\omega^2 h_0}{gs^2}\right)^{-\frac{5}{4}} \quad \text{or} \quad s\left(\frac{H_0}{h_0}\right)^{-\frac{2}{5}} \left(\frac{\omega^2 h_0}{g}\right)^{-\frac{1}{2}} < (\pi)^{-\frac{1}{5}} \approx 1.26$$

• Thus, the surf parameter for periodic waves can be defined as:

$$\checkmark \ \xi_p = s \left(\frac{H_0}{h_0}\right)^{-\frac{2}{5}} \left(\frac{\omega^2 h_0}{g}\right)^{-\frac{1}{2}}$$

- The breaking conditions for solitary waves and for periodic waves are consistent, i.e., $\xi_s \approx 1.20$ vs. $\xi_p \approx 1.26$.
- In the shallow water (or long wave) limit $\omega^2 h_0/g \sim (kh_0)^2$ and for solitary waves the Boussinesq approximation requires that $O(h_0/L)^2 \sim O(H_0/h_0)$, where L is the wavelength. Therefore, ξ_p reduces to ξ_s with a coefficient of $1/(2\pi)$ obtained.

Solitary wave runup – available experiments

	TT /1	G1 ()	Flume	material	Flume dimensions (m)		
Reference	H_0/n_0	Slope (s)	B & S	Slope	[Length×Width×Height]	Wave generation	
Hall and Watts (1953)	0.046 - 0.504	1/1 - 1/11.43	Concrete	Wood	25.91×4.27×1.22	MEC Pusher-type	
Saeki et al. (1971)	0.05 - 0.80	1/50 - 1/150	Glass	Plastic	24.0×0.8×NA	MEC Pneumatic	
Synolakis (1987) *	0.005 - 0.633	1/19.85	Steel/glass	Aluminum 37.7×0.61×0.93		PGM Piston-type	
Briggs et al. (1995) *	0.005 - 0.357	1/30	Glass	NA	42.4×NA×NA	PGM Piston-type	
Li and Raichlen (2001) *	0.026 - 0.339	1/2.08			15.25×0.4×0.61		
(2002) *	0.010 0.419	1/15	Steel/glass	Aluminum	36.6×0.4×0.61	PGM Piston-type	
(2003) *	0.019 - 0.418	1/15			45.7×0.9×0.9		
Jensen et al. (2003) *	0.12 - 0.665	1/5.37	Glass	Perspex	25.0×0.5×1.0	PGM Piston-type	
Hsiao et al. (2008) *	0.011 - 0.338	1/60	Concrete	Concrete	300×5.0×5.2	PGM Piston-type	
Chang et al. (2009) *	0.030 - 0.259	1/20	Concrete	Concrete	300×5.0×5.2	PGM Piston-type	
	0.049 - 0.498	1/2.47	Glass	Glass	34.0×0.6×0.9		
L = -+ -1 (2012) *	0.005 - 0.139	1/10	Glass	Glass	12.0×0.8×1.0		
Lo et al. (2013) *	0.105 - 0.198	1/12	Concrete	Concrete	104×3.7×4.6	- PGM Piston-type	
	0.005 - 0.417	1/20	Glass	Plastic	34.0×0.6×0.9	-	
Pedersen et al. (2013) *	0.098 - 0.481	1/5.67	Glass	Plastic	25.0×0.5×1.0	PGM Piston-type	
Ting (2013) *	0.70	1/40	Glass	Plexiglas	25.0×0.9×0.75	PGM Piston-type	
Pujara et al. (2015) *	0.05 - 0.286	1/12	Concrete	Concrete	104×3.7×4.6	PGM Piston-type	
Hafsteinsson et al. (2017) *	0.20 - 0.70	1/9.5 - 1/57.3	Glass	Plastic	14.0×0.50×0.70	PGM Piston-type	
Manoj Kumar et al. (2017) *	0.06 - 0.12	1/20	NA	NA	28.0×1.0×NA	PGM Piston-type	
Smith et al. (2017) *	0.0986 - 0.4863	1/11.20	Glass	Plastic	25.0×0.5×1.0	PGM Piston-type	
Wu et al. (2017) *	0.051 - 0.449	1/20	Steel/glass	Aluminum Plexiglas	22.0×0.50×0.76	PGM Piston-type	
Present study *	0.057 - 0.412	1/100	Concrete	Concrete	300×5.0×5.2	PGM Piston-type	

Solitary wave runup – new experiments @ THL

Tainan Hydraulics Laboratory (THL)

- Dimension = $300m \times 5.0m \times 5.0m$
- Irregular waves up to 1.0m height
- Re ~ 10^{6} (Field ~ 10^{7} ; Lab ~ 10^{4})
- ⇒ Solitary wave with simple geometry ⇒ 1/20, 1/40, 1/60, 1/100 slopes

Solitary wave runup – new experiments @ THL

7/18

Solitary wave runup – new experiments @ ^{8/18} THL

[Comparisons between measurements and theoretical solutions for different H_0/h_0]

Solitary wave runup – new experiments @ THL

[Snapshot at the moment of maximum runup height]

9/18

[Snapshot at the moment of wave overturning of a breaking solitary wave]

Solitary wave runup – available experiments

Solitary wave runup – unified runup formula

Periodic wave runup – available experiments

12/18

Reference	II /1-		<i>T</i> (s)	Slope (s)	Flume material		Flume dimensions (m)		
	H_0/h_0				B & S	Slope	[Length×Width×Height]		wave generation
Granthem (1953)	0.077 - 0.	349	0.67 - 2.75	1/0.27 - 1/3.73	NA/Glass	NA	18.29×	0.30×0.91	NA
Saville (1956) *	0.040 - 0.387		0.61 - 4.70	1/3, 1/10	Steel	NA	29.26×0.46×0.61		Pusher-type
Savage (1958) *	0.013 - 0.	168	2.63 - 4.70	1/10	Concrete	Concrete	36.58×	1.52×1.52	Plunger-type
Bowen et al. (1968) *	0.051 - 0.	313	0.82 - 2.37	1/12	NA/Glass	Wood	40.0×0.50×0.75		NA
Ahrens (1975) *	0.024 - 0.1	374	0.72 - 4.70	1/10	NA	Fiberglass	22.0×0.46×0.61		Piston-type
Roos and Battjes (1976) *	0.156 - 0.4	473	1.01 - 1.95	1/3, 1/5, 1/7	NA	Plywood	30.0×0.80×0.60		NA
Neelamani et al. (1999)	0.06 - 0.4	42	1.5 - 6.0	1/3, 1/4, 1/6	NA	NA	100×2.0×1.2		Flap-type
Wijetunge (2004)	0.090 - 0.1	383	0.70 - 1.35	1/1.56 - 1/4.13	Perspex	Wood	12.75×0.52×0.70		NA
Human et al. (2006) *	0.011 - 0.157	157	1.6 - 4.4	1/10, 1/20,	Concrete	Concrete	300.0×5.0×5.2		PGM Piston-type
Hwung et al. (2006) *		157		1/40					
Wijetunge (2007)	0.066 - 0.	255	0.77 - 1.56	1/2	Concrete	Aluminum	40.0×2.00×2.13		Plunger-type
Hsu et al. (2012)	0.043 - 0.	182	0.80 - 2.00	1/3, 1/4, 1/5	Steel/glass	Wood	25.0×0	0.50×0.60	PGM Piston-type
Hammalton (2017) *	0.1 0	5	1.00 - 3.33	1/3.73 -	Glass	Metal	20.0×1.20×1.00		DCM Diston tune
	0.1 - 0.	5		1/8.14			13.7×0).45×0.75	r Givi Fisioli-type
Wu et al. (2017) *	0.153 - 0.1	364	0.8 - 1.5	1/20	Steel/glass	Plexiglas	22.0×0	0.50×0.76	PGM Piston-type
		Periodic waves						Solit	ary waves
Iribarren number $\xi_{IR} = s/\sqrt{H_0/L_0} = s(H_0/h_0)^{-\frac{1}{2}}((\omega^2 h_0)/g)^{-\frac{1}{2}}(2\pi)^{\frac{1}{2}}$							$\xi_{IR-s} =$	$= s(H_0/h_0)^{-1}$	
Present study		$\xi_p = s(H_0/h_0)^{-\frac{2}{5}} ((\omega^2 h_0)/g)^{-\frac{1}{2}}$						$\xi_s = s$	$(H_0/h_0)^{-\frac{9}{10}}$

Periodic wave runup – available experiments

Periodic wave runup – available experiments

Unified runup formula – solitary and periodic

15/18

waves

Unified runup formula – solitary and periodic

16/18

waves

Unified runup formula – solitary and periodic

17/18

waves

Conclusions

- Using laboratory data, the normalized runup heights of solitary and periodic waves can be characterized by a single surf parameter, which is based on theoretical breaking criteria.
- Additional laboratory experiments in a large-scale wave flume were performed for breaking solitary waves on a 1/100 slope. The new experimental data extend the range of surf parameters for solitary waves.
- Although surf parameters are defined separately for solitary and periodic waves, an empirical formula for the normalized runup height can be used for estimating the runup heights of breaking solitary and periodic waves on uniform slopes.
- The proposed empirical formula is applicable for different breakers from surging, plunging to spilling breakers.
- Since the formula is deduced from laboratory data, where the beach material and scale effects appear to be minor, the applications of this formula for field conditions should be exercised cautiously.
- ✤ Wu, Y.-T., Liu, P.L.-F., Hwang, K.-S., Hwung, H.-H. (2018) "On the runup of laboratory-generated breaking solitary and periodic waves on a uniform

IWDRC,NCKU 國立成功大學國際波動力學研究中心 INTERNATIONAL WAVE DYNAMICS RESEARCH CENTER