

36TH INTERNATIONAL CONFERENCE ON COASTAL ENGINEERING 2018

Baltimore, Maryland | July 30 – August 3, 2018

The State of the Art and Science of Coastal Engineering

Validation of Sand-Mud Mixture Transport Model with Field and Flume Experiments

OTaichi KOSAKO¹, Yasuyuki NAKAGAWA^{1,2}, Takashi UMEYAMA³, and Masaru TAKAYAMA³

1: Port and Airport Research Institute (PARI), Japan 2: Kyushu University and PARI, Japan 3: Ministry of Land, Infrastructure and Tourism (MLIT), Japan

Introduction

- In estuaries and coasts, sand-mud mixtures are often observed.
- Mud content has an important role in erosion behavior of mixed beds (e.g., Mitchener and Torfs, 1996).
- Simple (linear) combination of transport models for pure sand and mud (ST + MT models).
- Sand-mud mixture transport model (SMMT model) considering erosion process of sandmud mixture (e.g., Chesher & Ockenden, 1997; van Ledden, 2003)

Distribution of mud content in the Ariake Bay (Nakagawa, 2003)

required for better prediction of bed evolution in estuaries and coasts

Sand-Mud Mixture Transport (SMMT) model

Critical shear stress τ_{cr} of sand-mud mixture (van Ledden, 2003)

• τ_{cr} is assumed to vary between pure sand ($\tau_{cr,s}$) and mud ($\tau_{cr,m}$) depending on mud content (P_m), but with a critical value ($P_{m,cr}$).

$$\tau_{cr} \begin{cases} = \tau_{cr,s} (1+P_m)^{\beta}, & \text{if } P_m < P_{m,cr} \\ = \frac{\tau_{cr,s} (1+P_{m,cr})^{\beta} - \tau_{cr,m}}{1-P_{m,cr}} (1-P_m) + \tau_{cr,m}, & \text{if } P_m \ge P_{m,cr} \end{cases}$$

 $\tau_{cr,s}$: critical shear stress for pure sand $\tau_{cr,m}$: critical shear stress for pure mud $P_{m,cr}$: critical mud content

: dimensionless parameter

ICCE

2018

Sand-Mud Mixture Transport (SMMT) model

Erosion formulations of sand-mud mixture (van Ledden, 2003)

Objectives

van Ledden's formulation

$$\tau_{cr} \begin{cases} = \tau_{cr,s} (1+P_m)^{\beta}, & \text{if } P_m < P_{m,cr} \\ = \frac{\tau_{cr,s} (1+P_{m,cr})^{\beta} - \tau_{cr,m}}{1-P_{m,cr}} (1-P_m) + \tau_{cr,m}, & \text{if } P_m \ge P_{m,cr} \end{cases}$$

 $\tau_{cr,s}$: critical shear stress for pure sand $\tau_{cr,m}$: critical shear stress for pure mud $P_{m,cr}$: critical mud content β : dimensionless parameter

= ???

These parameters are required for τ_{cr}

- Calibration and validation of SMMT model with flume experiments
- Sediment transport simulation in a field with SMMT model

Erosion tests with annular flume in PARI

Erosion tests with annular flume in PARI

➢ Forcing condition

- 4 grades of steady unidirectional flow
- Depth-averaged velocity $\overline{m{U}}$ measured by ADCP
- Critical near-bottom velocity u_{cr}
 - (z = B + 5 mm) measured by ADV profiler

Erosion tests with annular flume in PARI

Parameter calibration of SMMT model

Experimental results

- Erosion rate and trap rate significantly decrease due to addition of mud.
- Trap rate (due to mainly bedload) in Case 3-5 decrease to less than one-tenth of that in Case 1.

Calibration of τ_{cr} with experimental result

Validation of SMMT model with flume experiments ■ Numerical configuration and domain

- Erosion rate and trap rate are simulated with the present SMMT model.
- The simulated results are compared with experimental ones to validate the model.

Numerical configuration

Numerical domain	Х	10 m
	Y	0.8 m
	Z	0.7 m
	dx, dy	0.1 m
Grid size	dz	0.2, 0.2, 0.2, 0.05, 0.03, 0.02 m
Forcing condition		Unidirectional flow
Mud content Median diameter for sand	P_m $d_{50,s}$	Experimental values 250 μm
mud	$d_{50,m}$	15 µm
Critical mud content	$P_{m,cr}$	0.3425
Critical shear stress for pure sand	$\tau_{e,s}$	0.0269 Pa
mud	$\tau_{e,m}$	0.1668 Pa
Dimensionless parameter	β	6.4875
Erosion coefficient for mud	M	0.02 kg/m ² /min

Validation of SMMT model with flume experiments

Simulated results

Sediment transport simulation in a field with SMMT model Numerical configuration and domains

 Intertidal area around Kumamoto Port are targeted, because sand-mud mixtures are formed there.

Numerical configuration

Computational period	Aug.18 – Sep.1 in 2016	
Horizontal resolution	L1:900 m (90*100 grids) L2:300 m (62*124 grids) L3:100 m (79*43 grids)	
Vertical layers	10 level layers	
Tides	5 major constituents (M2, S2, K1, O1, N2)	
Waves	Computed by SWAN	
Other forcing factors	None	

CCE

2018

Sediment transport simulation in a field with SMMT model

Simulated results

• The SMMT model can reproduce variation of SSC induced by combined tidal elevation and wind waves.

CCE

Summary

Parameter calibration of SMMT model

- Increasing τ_{cr} from 5 to 45 % mud content (by 4.5 times)
- Decreasing erosion rates from 5 to 25 % mud content
- Parameters for τ_{cr} were obtained from experimental results.
- Validation of SMMT model with flume experiments
 - Good agreement with experimental results, quantitatively reproducing erosion behavior depending on mud content.
- Numerical simulation in a field with SMMT model
 - The present model can reproduce variation of SSC induced by combined tidal elevation and wind waves.

