

36TH INTERNATIONAL CONFERENCE ON COASTAL ENGINEERING 2018

Baltimore, Maryland | July 30 - August 3, 2018

The State of the Art and Science of Coastal Engineering

North Breton Island Restoration, Designing to Increase a Barrier Island's Habitat And Longevity

Murat Utku, PhD, PE OBG

Gary Emmanuel OBG

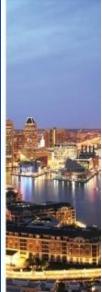
Michael Poff
Coastal Engineering Consultants

North Breton Island NRDA Phase III Early Restoration Project Team

OUTLINE

Introduction

Data Collection

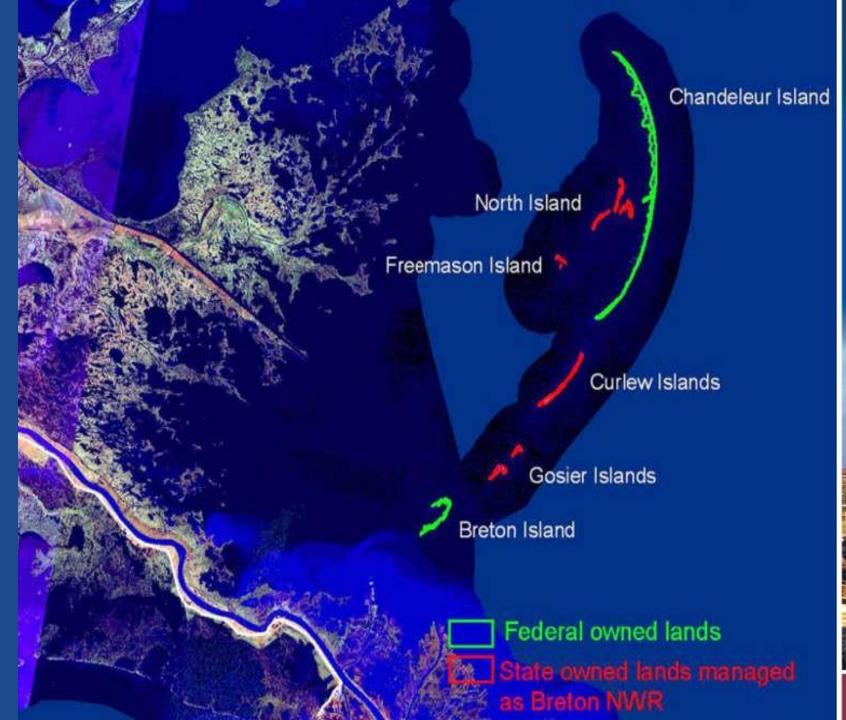

Development of Alternatives

Alternatives Analysis

Recommended Restoration Plan

Path Forward

Introduction


Deepwater Horizon Early Restoration Phase III

Louisiana Outer Coast Restoration Project

Goal: *restore beach, dune, and back-barrier marsh habitats* to support breeding birds *(brown pelicans, terns, skimmers, and gulls)* and to help compensate the public for spill-related injuries and losses to these resources

Breton NWR Map

North Breton Island

Refuge established on October 4, 1904 by an executive order of President Theodore Roosevelt. This is the 2nd oldest refuge in the country and the only refuge know to have been visited by President Roosevelt in 1915.

Island Restoration Concept

Habitat	Approximate Area	
Beach	76.2 Acres	
Dune	138.7 Acres	
Marsh	137.3 Acres	
Total	352 Acres	

Approximately 76 acres of beach, 139 acres of dune, and 137 acres of back barrier marsh habitat

Total island width of 1,100 feet, bounded by sloped foreshore and back barrier marsh

Total island length of 16,000 linear feet

500 ft. wide back barrier marsh platform built at approximately +3

Ref: Phase III Early Restoration Plan and Programmatic Environmental Impact Statement

Conceptual Design Map

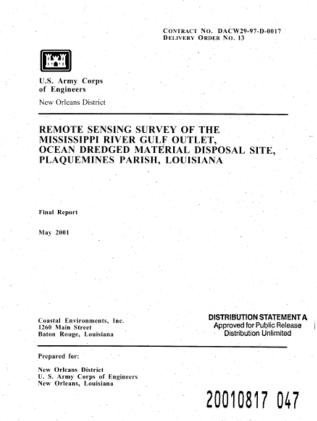
OUTLINE

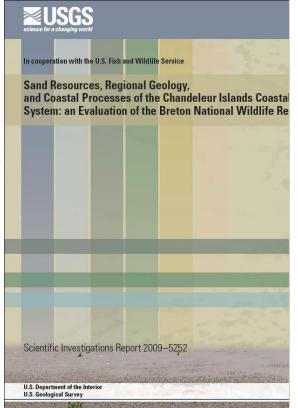
Introduction

Data Collection

Development of Alternatives

Alternatives Analysis


Recommended Restoration Plan


Path Forward

North Breton Island Historic and Supplemental Reports

MRGO ECOSYSTEM RESTORATION FEASIBILITY STUDY

CHANDELEUR AND BRETON ISLANDS

Prepared for:

URS Group

. .

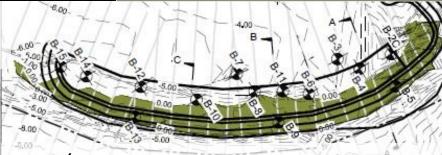
U.S. Army Corps of Engineers

Prepared by

Coastal Planning & Engineering, Inc. 1

200

Pontchartrain Institute for Environmental Sciences, University of New Orleans² 2000 Lakeshore Drive, New Orleans, LA


Gordon Thomson, P.E.¹
Michael Miner, Ph.D.²
Andrew Wycklendt, M.Sc.
Michelle Rees, M.Sc.¹
David Swieler, M.Sc.¹

Recommended Citation: Thomson, G., Miner, M., Wycklendt, A., Rees, M. Swigler, D., 2010. MRGO Ecosystem Restoration Feasibility Study – Chandeleur and Breton Islands. Boca Raton, Florida: Coastal Planning & Engineering, Inc. 122p. (Report prepared for USACE under contracts to IR)

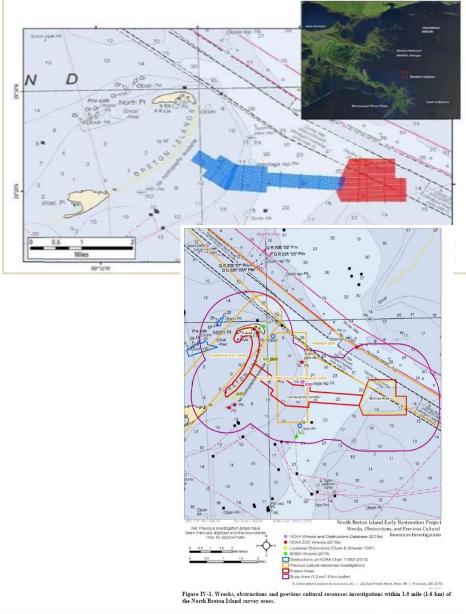
> December 2009 Rev May 2010

Assessing the Resilience of a Vital Barrier Island Chain (USGS 2007)

Gulf of Mexico

2015/2016

On-Island Geotechnical Investigation



36TH INTERNATIONAL CONFERENCE ON COASTAL ENGINEERING 2018

Baltimore, Maryland | July 30 - August 3, 2018

Borrow Area
Detailed
Geophysical
and Cultural
Resources
Survey

North Breton Island Early Restoration Project Marine Geophysical and Hydrographic Survey Report

June 2016

DRAFT REPORT

JANUARY 2017

PHASE I SUBMERGED CULTURAL RESOURCES ANALYSES FOR THE NORTH BRETON ISLAND RESTORATION PROJECT

1 | Page

PREPARED FOR:

O'BRIEN & GERE ENGINEERS, INC. 333 WEST WASHINGTON STREET SYRACUSE, NY 13202

R. CHRISTOPHER GOODWIN & ASSOCIATES, INC. 241 EAST FOURTH STREET. SUITE 100 • FREDERICK, MD 21701

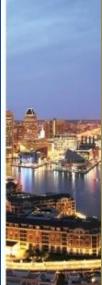
36TH INTERNATIONAL CONFERENCE ON COASTAL ENGINEERING 2018

Baltimore, Maryland | July 30 - August 3, 2018

OUTLINE

Introduction

Data Collection


Development of Alternatives

Alternatives Analysis

Recommended Restoration Plan

Path Forward

Concept Plan Development

Three primary design approaches

- Programmatic Environmental Impact Statement (PEIS)
- Geomorphic & Ecologic Form & Function (GEFF)
- Feeder Beach

Application of Coastal Louisiana Barrier Island Restoration Design Principals

Meet and exceed PEIS target restoration acres

Design Iterations

CONCEPT	BEACH WIDTH (FT)	BEACH HEIGHT (NAVD88, FT)	DUNE WIDTH (FT)	DUNE HEIGHT (NAVD88, FT)	BACK BEACH WIDTH (FT)	BACK BEACH HEIGHT (NAVD88, FT)	MARSH WIDTH (FT)	MARSH HEIGHT (NAVD88, FT)	VOLUME (CUBIC YARDS)
1A	200	3	100	9	NA	NA	500	3	3,121,000
1B	200	3	100	9	NA	NA	500	3	3.403,000
2A	290	4.5	100	6.5	100	4.5	800	3	3,986,000
2B	200	4.5	100	6.5	100	4.5	800	3	3,506,000
2C	200	4.5	100	6.5	100	4.5	800	3	3,485,000
3A	200 PLUS FEEDER	4.5	100	6.5	100	4.5	800	3	3,556,000
3B	500 PLUS FEEDER	3.5	NA	NA	NA	NA	800	3	3,563,000

Conserve volume throughout design iterations (same order of magnitude as construction budgets)

Consider protecting existing healthy marsh

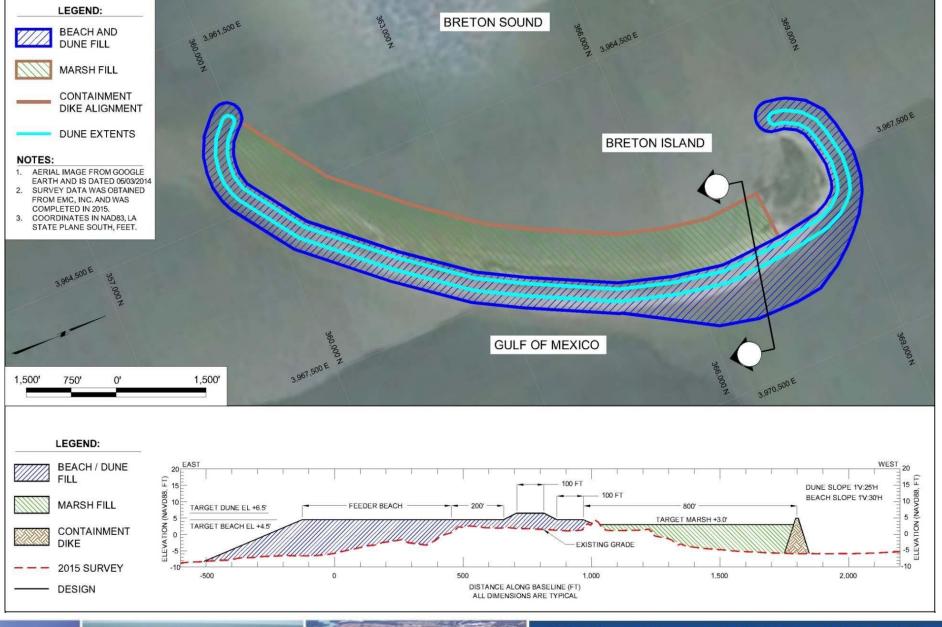
Consider containment dike constructability

Capitalize on coastal forcing (net transport)

Concept Plan #1A: PEIS

Concept Plan #2C: GEFF

Concept Plan #3B: Feeder Beach



Concept Plan #4A: GEFF Plus Feeder Beach

36TH INTERNATIONAL CONFERENCE ON COASTAL ENGINEERING 2018

Baltimore Maryland | July 30 - August 3, 2018

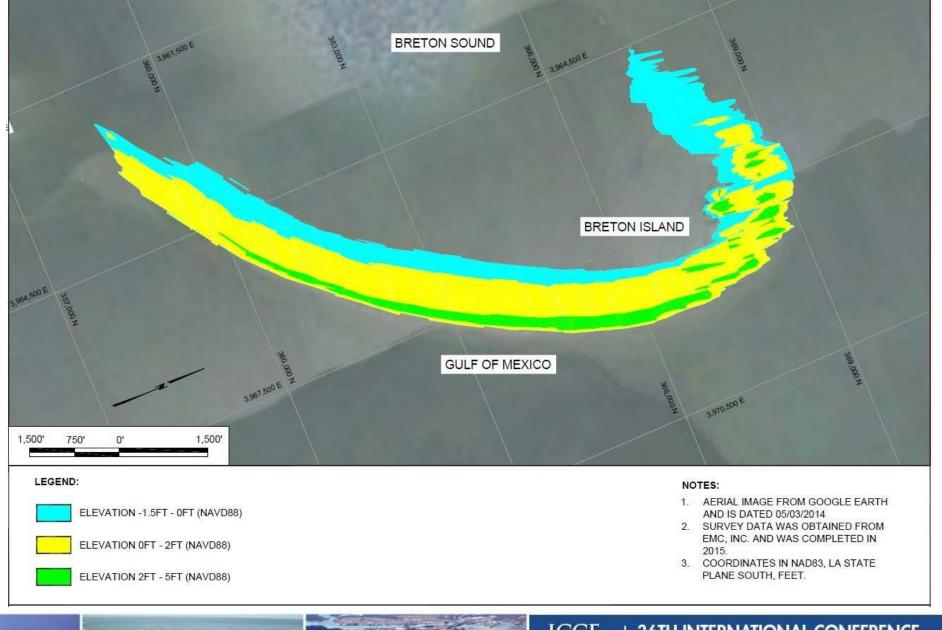
OUTLINE

Introduction

Data Collection

Development of Alternatives

Alternatives Analysis


Recommended Restoration Plan

Path Forward

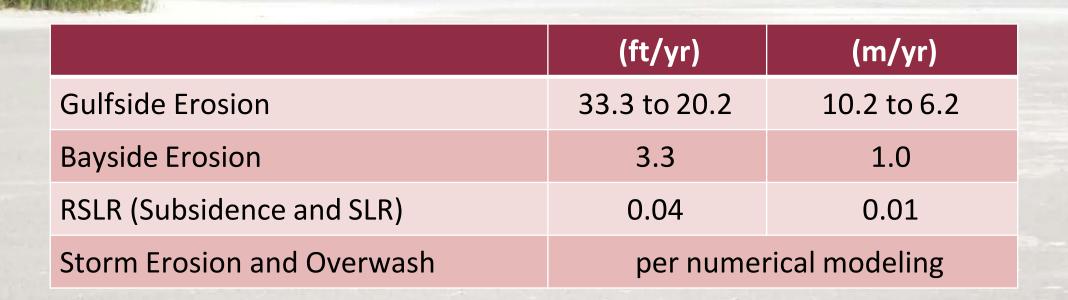
Existing Conditions Review

36TH INTERNATIONAL CONFERENCE ON COASTAL ENGINEERING 2018

Baltimar Maryland | July 30 - August 3, 2018

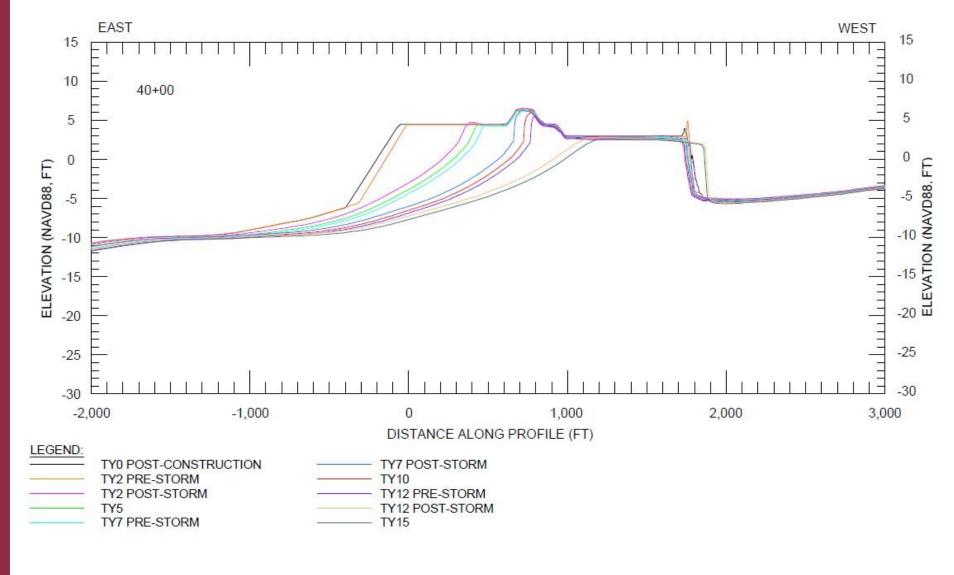
North Breton Island Existing **Habitat Acres**

Dune (+5.0 and above)	0 acres	
Supratidal (+2.0 to +4.9)	32 acres	
Gulf Intertidal (0.00 to +1.99)	32 acres	
Bay Intertidal (0.00 to +1.99)	150 acres	
Subtidal (-1.5 to 0.00) Bayside Only	119 acres	



(Calculated from EMC 2016 Design Survey)

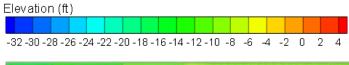
Coastal Processes and **Forcing Functions**

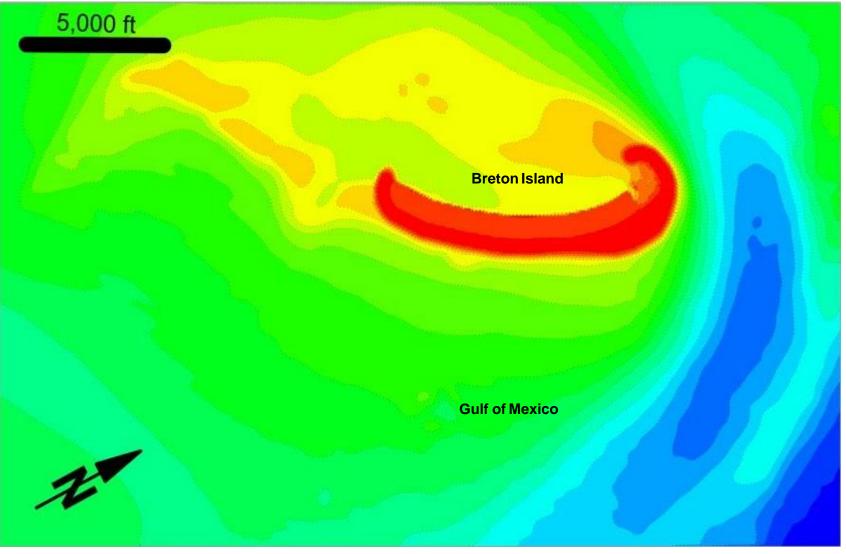


All Profiles

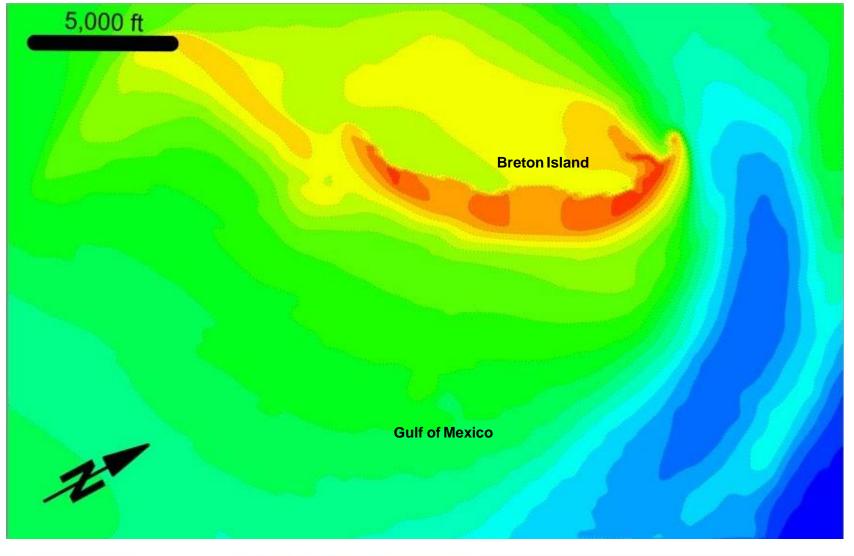
Habitat Acres

Acres Intertidal (0 - 2 ft)	Acres Supratidal (2 - 5 ft)	Acres Dune (+5 ft)	Total Acres
153.4	25.8	0.0	179.2
41.9	358.2	59.7	459.9
43.6	336.3	59.2	439.1
71.8	280.0	56.9	408.7
66.8	269.0	33.3	369.1
64.7	257.1	24.2	345.9
184.6	148.9	13.4	346.9
155.5	147.1	3.1	305.7
155.0	129.4	0.2	284.6
164.4	47.1	0.0	211.5
134.3	32.8	0.0	167.1
	Intertidal (0 - 2 ft) 153.4 41.9 43.6 71.8 66.8 64.7 184.6 155.5 155.0 164.4	Intertidal (0 - 2 ft) Supratidal (2 - 5 ft) 153.4 25.8 41.9 358.2 43.6 336.3 71.8 280.0 66.8 269.0 64.7 257.1 184.6 148.9 155.5 147.1 155.0 129.4 164.4 47.1	Intertidal (0 - 2 ft) Supratidal (2 - 5 ft) Dune (+5 ft) 153.4 25.8 0.0 41.9 358.2 59.7 43.6 336.3 59.2 71.8 280.0 56.9 66.8 269.0 33.3 64.7 257.1 24.2 184.6 148.9 13.4 155.5 147.1 3.1 155.0 129.4 0.2 164.4 47.1 0.0





TY0 Post Construction

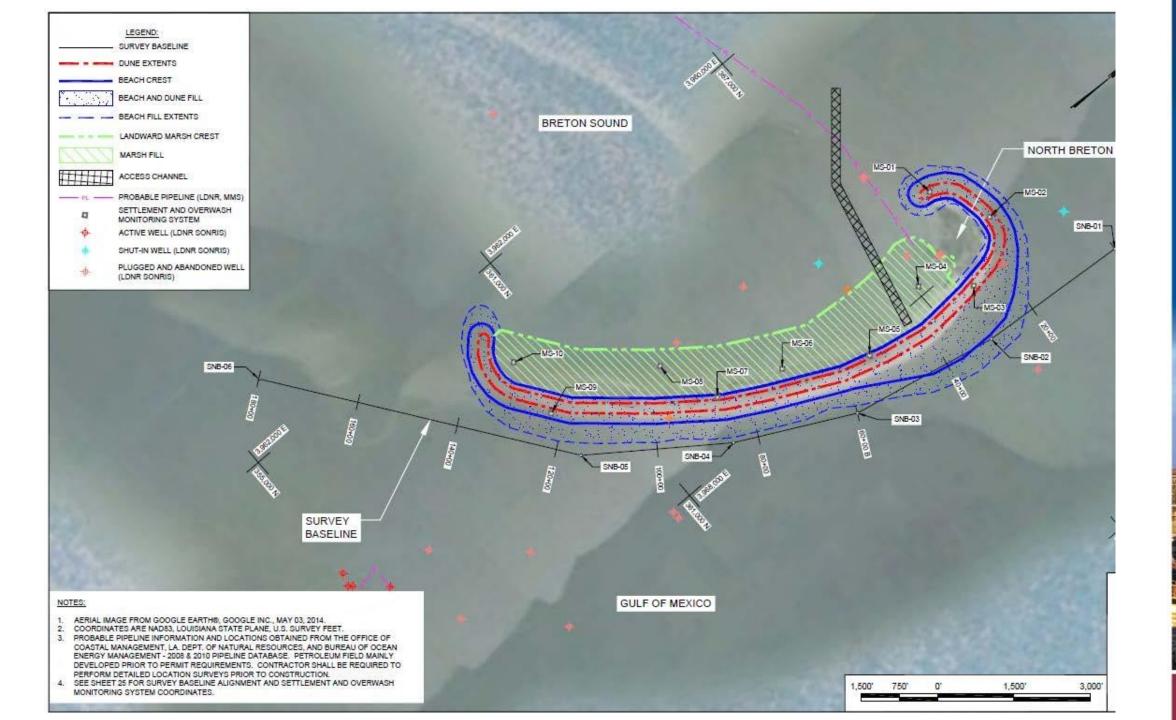


OUTLINE

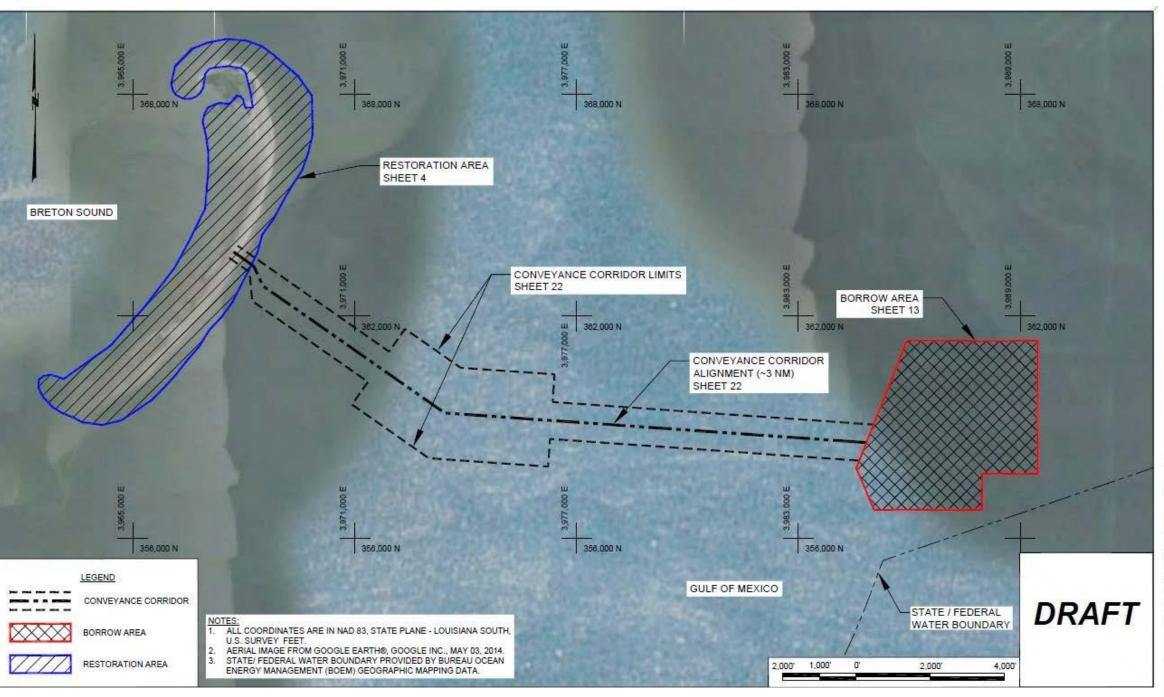
Introduction

Data Collection

Development of Alternatives


Alternatives Analysis

Recommended Restoration Plan


Path Forward

Timelines and Path Forward

Phase	Projected Schedule
Permit-Ready Plans and Technical Specifications	Early June 2017
Joint Coastal Permit Application USACE LDNR Permits	Mid-June 2017 February 2018 September 2017
Construction Documents Preparation	March 2018 – October 2018
Updated Topographic and Bathymetric Survey	Late Summer 2018
Final Contract Documents	Early Fall 2018
Construction Procurement	November 2018
Construction	Likely 2019

North Breton Island NRDA Phase III Early Restoration Project Team

36TH INTERNATIONAL CONFERENCE ON COASTAL ENGINEERING 2018

Baltimore, Maryland | July 30 - August 3, 2018

The State of the Art and Science of Coastal Engineering

Murat.Utku@obg.com | Gary.Emmanuel@obg.com | Mpoff@cecifl.com

OBG | THERE'S A WAY

