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NEW WAVE HINDCAST FOR THE RIO DE LA PLATA ESTUARY 

Rodrigo Alonso1, Pablo Santoro1 and Sebastián Solari1 

This paper present a wave hindcast for the Río de la Plata Estuary. It was based on the version 5.16 of the numerical 

wave model WAVEWATCH III ®, forcing with CFSR winds and considering non-stationary water levels and 

currents obtained from the hydrodynamic model TELEMAC 2D. A multi-mission altimetry database processed by 

IFREMER was considered as the ground truth. It was taken as reference to calibrate and validate the wave model, and 

also to do a local validation of CFSR winds. Tuning the Γ coefficient of the JONSWAP parametrization of 

dissipation by bottom friction (Sbot) and the BETAMAX coefficient of the energy input by wind (Sin), it was possible 

to correct the large negative BIAS in significant wave height (Hs) obtained with the default configuration. The 

hindcast cover the period 1985–2016 providing wave parameters with a spatial resolution of 1 km and a time step of 

1 hour and full spectra at a 10 km offshore distance along the coast.   
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INTRODUCTION  

The Río de la Plata (RDP) is a large estuary formed by the confluence of Paraná and Uruguay 

rivers that discharge into the Atlantic Ocean. As shown in Figure 1, it is 290 km long and has a NW-SE 

orientation. An imaginary line that connects Montevideo and Punta Piedras is the upstream limit of the 

outer zone of the estuary. This zone is wide (O(200 km)), and water depth varies between 10 and 20 m. 

The wave conditions in this zone are a combination of wind-seas and swells that come from the south 

and dissipate as they travel into the estuary. On the other hand, the intermediate and inner zone is 

narrower (O(50 km)) and shallower (O(5 m)) and wave-conditions are dominated by sea-winds.  

As a large and shallow water body, wave-bottom interaction processes are relevant and the 

composition of the bottom become an important fact. Fine sediment carried by the two large tributaries 

mostly covers the bottom conforming different patches that differ from one another according to the 

proportion of clay, silt and sand (Wells and Daborn, 1998). Hence, it is a heterogeneous bottom where 

fine sediment predominates.        

 

 
 

Figure 1. Location and bathymetry of the study area. 

 

The availability of reliable wave data is useful for multiple activities. Currently, the state of the art 

of wave modeling, the computing power and the availability of reliable wind data from atmospheric 
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reanalysis (e.g. CFSR), make it possible to improve wave information at any place by performing a 

wave hindcast. However, its implementation for the RDP has many difficulties. Most of them are 

common for any estuary where water level variations, currents and bottom composition strongly 

influence wave transformation processes. This is evident in Alonso et al. (2015), where the results of a 

high-resolution wave hindcast for Uruguayan waters show good agreement with measurements on the 

Atlantic region but not so good agreement for the RDP. Particularly, a systematic underestimation of 

significant wave height (Hs) is observed at the intermediate and inner region of the estuary. 

For that reason, a new wave hindcast for the RDP was developed and it is presented in this paper as 

follows. On Materials and Methods section, the wave model configuration is presented and the input 

data as well as the altimetry database used as ground–truth are described. This section finish with the 

presentation of the methodologies used to validate input winds and to calibrate the wave model. After 

that, the obtained results are shown and discussed, to end with the main conclusions and the 

identification of necessaries future steps to keep improving wave data for this part of the globe.       

MATERIALS AND METHODS  

Wave model configuration 

The model was implemented on the wave modeling framework WAVEWATCH III® version 5.16 

(WWDG, 2016). The parametrizations named ST4 was considered. It incorporates the latest 

results of the physics of energy input by wind and whitecapping dissipation (Sin+Sds), that are 

exposed on Arduhin et al. (2009 and 2010), Leckler et al. (2013) and Rascle and Arduhin (2013).  

The choice of ST4 was based on the results of Stopa et al. (2016), where for different global 

hindcast, the one that use ST4 has the best performance on the western side of the south Atlantic 

Ocean.  

Regarding to dissipation by bottom friction (Sbot), for simplicity and as an initial step, the 

linear JONSWAP parametrization (Hasselmann et al. 1973) was used.          

Five grids were used on a multi-grid two-way nesting mode. Starting with a coarse global grid 

(Grid 1) and reaching the Uruguayan coast and the intermediate and inner RDP (Grid 5) with a 

resolution of 40”·(~1km). The main characteristics of the grids can be found on Table 1 and 

Figure 2.  

 
Table 1. Wave model grids. 

  Range of 
longitudes 

Range of 
latitudes  

∆lon x ∆lat # Points #Active points Time steps (seconds) 
∆tg/∆tx-y/∆tk-θ/∆ts  

Grid 1 -180º / 180º -78º / 78º 1.25º x 1º 45216 29085 (64.3%) 3600/1800/1800/30 
Grid 2 -70º / 20º -78º / 10º 0.5º x 0.5º 32399 23304 (71.9%) 1800/900/900/30 
Grid 3 -66º / -42º -42º / -22º 1/6º x 1/6º 17545 7828 (44.6%) 900/300/450/20 
Grid 4 -59º / -51.5º -36.5º/-33.5 º 2’x 2’ 20556 5692 (27.7%) 300/100/150/10 
Grid 5 -59º / -51.5 -36.5º/-33.5 º 40’’ x 40’’ 183196 14548 (7.9%) 150/50/75/5 

 

 
 

Figure 2. Grid domains. Grid 1 (Global), Grid 2 (South Atlantic), Grid 3 (10'), Grid 4 (green) and Grid 5 

(yellow). 

 

The spectral discretization is the same for whole grids. Spectra were discretized in 36 

directions uniformly distributed and 25 frequencies distributed as a logarithmic grid covering the 

range 0.0418 Hz - 0.4114 Hz.  
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Model inputs 

Bathymetry. ETOPO1 (Amante and Eatkins, 2009) was used on grids 1 and 2, while local and 

more detailed nautical charts were used on grids 4 and 5. In the case of grid 3, the nautical charts do not 

cover all the domain, so there were complemented with ETOPO1. 

Shoreline. It is important for the definition of the sub-grid obstacles, such as islands. The GSHHG 

data set (Wessel and Smith, 1996) was used on grids 1, 2 and 3. The high resolution data set was used 

on grid 1 while the full resolution one was used on grids 2 and 3. For grids 4 and 5, the shoreline was 

obtained from the nautical charts. 

Wind. The same wind data were used for all the grids. It was obtained from the atmospheric 

reanalysis CFSR (Saha et al. 2010) and its extension CFSv2 (Saha et. al. 2014). The data were 

interpolated to a regular grid with 0.3125º x 0.3122º spatial resolution and 1h time step. 

Non-stationary water levels and currents. There were obtained from the hydrodynamic model 

TELEMAC 3D (Hervouet, 2007) implemented for the RDP domain taking into account fluvial 

discharges of Paraná and Uruguay rivers, tides at the oceanic boundary (astronomical and 

meteorological from a regional model), and wind and sea level pressure from CFSR reanalysis. The 

model was calibrated and validated using in situ measured data. The results show good agreement with 

the measured data, satisfactorily reproducing the main features of the RDP dynamics (see Santoro et al. 

2016). 

Altimetry database. 

It is a multi-mission database processed in IFREMER (Queffeulou and Croizé-Fillon, 2013). It 

covers the period 1991-2013. The Figure 3 shown the spatial distribution of the data for the area 

between latitudes 38 S - 32 S, and longitudes 58W – 52W. It was considered the reference data, at first, 

to validate the CFSR wind, and then to calibrate the wave model. 

 

 
 
Figure 3. Spatial distribution of the altimetry database. 

CFSR winds validation 

Each altimetry data was paired with one from CFSR. To obtain a CFSR value for a specific 

location and time, bi-lineal interpolation on space and lineal interpolation on time was done. For each 

of the sub-regions of Figure 3, standard error metrics were calculated. In addition, 20 quantiles 

equispaced on a Gumbel scale were compared superimposed on dispersion diagrams.   

Wave model calibration 

The year 2002 was chosen as the calibration period, because it has more altimetry data than an 

average year and also more extreme events than an average year. To define an extreme event, the 95th 

percentile was considered.  

Firstly, a simulation of 4 month (i.e. January 2002- April 2002) with the default parameter were 

performed. Based on the results of the default simulation, the parameter BETAMAX of the ST4 energy 

input by wind parametrization and the parameter Γ of the JONSWAP parametrization of dissipation by 

bottom friction were selected as the calibration parameters. 

The nine simulations described on Table 2 were considered. The objective was make the BIAS of 

Hs tent to zero and decrease the scatter index (SI) for the four sub-regions defined on Figure 4. Based 

on the results of these nine simulations, the value of one of the two calibration parameters was fixed and 

then, more simulations were done tuning the parameter that was left undefined.  
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Table 2. Combinations of Γ and BETAMAX considered on the first stage of the 

calibration process. 

 BETAMAX=1.43 BETAMAX=1.55 BETAMAX=1.66 

Γ=0m2s-3 Sim 11 Sim 12 Sim 13 
Γ=-0.03m2s-3 Sim 21 Sim 22 Sim 23 
Γ=-0.067m2s-3 Sim 31 Sim 32 Sim 33 

 

 

 
 

Figure 4. Sub-regions considered to calibrate the model. Intermediate and inner RDP (top-left), outer RDP 

(top-right), Atlantic 1 (bottom-left) and Atlantic 2 (bottom-right). 

RESULTS AND DISCUSSION 

CFSR winds validation 

The difference between the wind velocity at 10 m height (U10) obtained from CFSR reanalysis and 

the obtained from altimetry radars is shown on Figure 5 on terms of BIAS, root mean square error 

(RMSE) and correlation coefficient. Dispersion diagrams superimposed with q-q plots corresponding to 

the regions of Figure 4 are presented on Figure 6. 

From a general point of view, CFSR U10 shows a good performance on the whole study area with a 

small positive BIAS and RMSE around 2 m/s. As expected, the worst performance occur on the RDP, 

particularly on the inner zone. Special attention was paid to the underestimation observed on the higher 

quantiles of the intermediate and inner RDP (top-left plot of Figure 6), arriving to the conclusion that it 

is due to only a few events and different causes (i.e. time lag of the peaks, not feasible altimetry data, 

meteorological phenomena of smaller scale than the reanalysis, and events not captured by the 

reanalysis) were identified. Hence, no kind of correction was attempted and CFSR U10 was used 

directly. 

 

   
 
Figure 5. Comparison between CFSR data and altimetry measures of U10. Spatial distribution of BIAS (left). 

RMSE (center) and Correlation coefficient (right). 
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Figure 6. Dispersion diagram and q-q plot for the intermediate and inner RDP (top-left), outer RDP (top-

right), Atlantic 1 (bottom-left) and Atlantic 2 (bottom-right). 

Wave model calibration 

The results obtained with the default configuration of the model are sown on Figure 7. It is 

observed a small negative BIAS on the Atlantic and a greater one on the RDP. Hence, the strategy was 

increase Hs from BETAMAX increase combined with ||Γ|| decrease. The obtained results in terms of 

BIAS and SI for each region defined on Figure 4 are presented on tables 3 to 6.  

 

  
 
Figure 7. Dispersion diagram and q-q plot for the intermediate and inner RDP (left), and the Atlantic (right). 

Default simulation.  

 
Table 3. BIAS (m) / SI. Intermediate and inner RDP 

 BETAMAX=1.43 BETAMAX=1.55 BETAMAX=1.66 

Γ=0m2s-3 0.4 / 27 0.43 / 27 0.45 / 27.1 
Γ=-0.03m2s-3 -0.19 / 22.5 -0.16 / 22.9 -0.14 / 23.3 
Γ=-0.067m2s-3 -0.32 / 21.7 -0.29 / 21.6 -0.27 / 21.5 
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Table 4. BIAS (m) / SI. Outer RDP. 

 BETAMAX=1.43 BETAMAX=1.55 BETAMAX=1.66 

Γ=0m2s-3 0.12 / 39.6 0.15 / 40.3 0.17 / 40.9 
Γ=-0.03m2s-3 -0.17 / 31.3 -0.14 / 31.9 -0.12 / 32 
Γ=-0.067m2s-3 -0.30 / 31.8 -0.27 / 32.2 -0.25 / 32.6 

 
Table 5. BIAS (m) / SI. Atlantic 1. 

 BETAMAX=1.43 BETAMAX=1.55 BETAMAX=1.66 

Γ=0m2s-3 0.02 / 15.8 0.06 / 16.5 0.10 / 17.2 
Γ=-0.03m2s-3 -0.07 / 15.1 -0.02 / 15.7 0.01 / 16.4 
Γ=-0.067m2s-3 -0.15 / 15.3 -0.11 / 15.9 -0.07 / 16.5 

 
Table 6. BIAS (m) / SI. Atlantic 2 

 BETAMAX=1.43 BETAMAX=1.55 BETAMAX=1.66 

Γ=0m2s-3 -0.01 / 15.7 0.02 / 16 0.06 / 16.3 
Γ=-0.03m2s-3 -0.1 / 15.2 -0.11 / 15.3 -0.08 / 15.6 
Γ=-0.067m2s-3 -0.26 / 16 -0.23 / 16 -0.20 / 16.2 

 

The results are much more sensitive to Γ than to BETAMAX. Particularly in the RDP, the results 

evidence the relevance of wave-bottom interaction processes. BETAMAX was set on 1.55 because a 

better fit on high quantiles in the Atlantic were observed. Result consistent with Pereira et al. (2017). 

After that, Γ was continue tuned reaching the best results for Γ=-0.012m2s-3. These results can be 

appreciated on Figure 8. 

 

 

 
 
Figure 8. Dispersion diagram and q-q plot for the intermediate and inner RDP (top-left), outer RDP (top-

right), Atlantic 1 (bottom-left) and Atlantic 2 (bottom-right). Final configuration: BETAMAX = 1.55 and Γ=-

0.012m2s-3.  

A good agreement between modeled and altimetry Hs is observed. The main persistent problem is 

an overestimation of Hs for the highest waves in the intermediate and inner RDP. It is concluded that 

with JONSWAP parametrization is not possible to simulate properly moderate and high waves with the 

same Γ. Increasing || Γ|| it is possible to correct the BIAS of higher waves, but it will induce a negative 

BIAS on most frequent waves. Hence it is considered that BETAMAX = 1.55 and Γ=-0.012m2s-3 is the 

best configuration using JONSWAP parametrization and CFSR winds. 

Finally, the calibrated model was used to wave hindcasting the period 1985–2016, providing a 

database of wave parameters with a spatial resolution of 1 km and a time step of 1 hour and full spectra 
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at a 10 km offshore distance along the coast, with a distance between them also of 10 km 

approximately.  

CONCLUSIONS AND FUTURE WORK 

A new wave hindcast for Uruguay was developed. It has a better performance than the previous 

one, particularly for the Río de la Plata. The improvement was obtained from better winds and 

bathymetry, from a higher model resolution, from better physics of source terms, but mainly from 

including non-stationary water levels and from considering the dissipation by bottom friction to 

calibrate the model.  

The results clearly show the key role of bottom friction on wave dissipation, particularly on the 

intermediate and inner zone of the estuary. Due to its shallowness, water level variation due to tides and 

surges induce significant changes on water depths, so consider non-stationary water levels is a first 

mandatory step to proper model wave-bottom interaction in this zone. Calibrate the parameter Γ was the 

other step that was taken, and it is as far as it can be reached using JONSWAP parametrization.  

An overestimation of Hs is observed for the highest waves in the intermediate and inner RDP. It is 

concluded that with JONSWAP parametrization is not possible to simulate properly moderate and high 

waves with the same Γ. So, the others parametrizations available on WWIII are going to be tested, i.e., 

SHOWEX (Arduhin et al. 2003), Liu & Dalrymple (1978) and Ng (2000), and probably a new 

configuration will be necessary. It seems that for moderate waves, the mud of the bottom is 

consolidated being a smoother surface than a sandy bottom, but for higher waves the mud liquefies, 

triggering a wave damping process. So to represent this behavior, it is necessary to include a source 

term corresponding to wave damping by fluid mud, that have to be activated from a certain threshold. 

The dependence on wave condition and bottom composition of the threshold will be topic of future 

research.  

On the other hand, although the use of CFSR winds was validated, a component of the errors of the 

wave model are inherited from the wind fields. So improving them is the other parallel way to keep 

improving wave hindcasting for this region.  
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