Time-varying Emulator for Short- and Long-term Analysis of coastal flooding: TESLA-flood

Dylan Anderson¹, Peter Ruggiero¹, Fernando J. Mendez², Ana Rueda², Jose A.A. Antolinez², Laura Cagigal², John Marra³, Curt Storlazzi⁴, Patrick Barnard⁴ Oregon State University¹, University of Cantabria², NOAA³, US Geological Survey³

Military installations across the Pacific Ocean Basin

Military installations across the Pacific Ocean Basin

San Diego Tide Gauge

3/

San Diego Tide Gauge

$TWL = MSL + \eta_A + \eta_{NTR} + R$

San Diego Observational Record

Serafin et al. 2014

San Diego Observational Record

Serafin et al. 2014

Daily Chronology Model

Each day is assigned a weather pattern (Daily Weather Type – DWT)

Sunday	Monday	Tuesday	Wednesd	Thursday	Friday	Saturday		
] New Year's day	2	3	K	5	6	7		
WT4	WT9	WT15	11	12	13	14		

Daily Chronology Model

Each day is assigned a weather pattern (Daily Weather Type – DWT)

South Hem.

... each DWT has defined wave parameter and water level distributions, which are fed to dynamic models

Daily Chronology Model

Each day is assigned a weather pattern (Daily Weather Type – DWT)

South Hem.

... each DWT has defined wave parameter and water level distributions, which are fed to dynamic models

Cluster historical Sea Level Pressures – all SLP fields assigned to a "representative" weather pattern (Kmeans of PCA space)

CFSR Sea Level Pressures: 1979-present

980 985 990 995 1000 1005 1010 1015 1020 1025 1030

Rueda et. al. 2017

6

Summer (Jun, Jul, Aug)

Winter (Dec, Jan, Feb)

Summer (Jun, Jul, Aug)

Winter (Dec, Jan, Feb)

Summer (Jun, Jul, Aug)

Goal: Daily Chronology model...

distributions, which are fed to process-based models

Philosophy: a dynamic predictor, capturing changes in both time and space...

Hovmoller Diagrams

9

Philosophy: a dynamic predictor, capturing changes in both time and space...

Hovmoller Diagrams

longitude

А

Philosophy: a dynamic predictor, capturing changes in both time and space...

Hovmoller Diagrams

longitude

S

Δ

Philosophy: a dynamic predictor, capturing changes in both time and space...

Hovmoller Diagrams

Ο

S

Δ

160°E

 $120^{\circ}E$

Creating Annual Predictor: X^a

 $80^{\circ}W$

Philosophy: a dynamic predictor, capturing changes in both time and space...

Hovmoller Diagrams

Philosophy: a dynamic predictor, capturing changes in both time and space...

Hovmoller Diagrams

Creating Annual Predictor: X^a

Principle Component Analysis: Identify dominant modes of variability in "Hovmoller" space

East Pacific El Nino

WT#1 - 18 years

Warm transition year

WT#6 - 28 years

Cold transition year

Large-scale ENSO affects the probabilities of Probability AWT daily meterological patterns! Ĵ, S. Jak . T) Ĵ, Y X ¥ ¥ S. S,

Goal: Daily Chronology model...

Intraseasonal Predictor: Madden Julian Oscillation

 X_1^{MJO}

Intraseasonal Predictor: Madden Julian Oscillation

MJO has a clear affect on Tropical Cyclone frequency and tracks...

Goal: Daily Chronology model...

Categorical time series of DWTs for Extratropical Cyclones (ET) and Tropical Cyclones (Cat_i)

$$ET_{t}^{d} \in \{1, ..., n_{ET}\}$$
$$TC_{t}^{d} \in \{C_{0}, ..., C_{5}\}$$
$$DWT_{t} = (ET_{t}^{d} \cup TC_{t}^{d}) \in \{1, ..., n_{DWT}\}$$

 $\mathbf{X}_{t} = (X_{1,t}^{a}, X_{2,t}^{a}, X_{3,t}^{a}, \cos\frac{2\pi t}{T_{a}}, \sin\frac{2\pi t}{T_{a}}, X_{1,t}^{MJO}, X_{2,t}^{MJO})$

Categorical time series of DWTs for Extratropical Cyclones (ET) and Tropical Cyclones (Cat_i)

19

Categorical time series of DWTs for Extratropical Cyclones (ET) and Tropical Cyclones (Cat_i)

Cat0

$$ET_{t}^{d} \in \{1, ..., n_{ET}\}$$
$$TC_{t}^{d} \in \{C_{0}, ..., C_{5}\}$$
$$DWT_{t} = (ET_{t}^{d} \cup TC_{t}^{d}) \in \{1, ..., n_{DWT}\}$$

Categorical time series of DWTs for Extratropical Cyclones (ET) and Tropical Cyclones (Cat_i)

$$ET_{t}^{d} \in \{1, ..., n_{ET}\}$$
$$TC_{t}^{d} \in \{C_{0}, ..., C_{5}\}$$
$$DWT_{t} = (ET_{t}^{d} \cup TC_{t}^{d}) \in \{1, ..., n_{DWT}\}$$

 $\mathbf{X}_{t} = (X_{1,t}^{a}, X_{2,t}^{a}, X_{3,t}^{a}, \cos\frac{2\pi t}{T}, \sin\frac{2\pi t}{T}, X_{1,t}^{MJO}, X_{2,t}^{MJO})$

San Diego Observational Record

Which "climate patterns" have greatest potential for flooding?

Which "compound events" have greater potential for flooding?

twl (m)

Which "compound events" have greater potential for flooding?

150

100

-0.5

0

0.5 swl (m) 1.5

• 1 in 100 year events

twl (m)

twl (m)

Extrapolate climate to DOD training operation questions

$$TWL = GSLR + MSL + \eta_A + \eta_{NTR} + R$$

ET3 ET3 ET6 ET6 ET6 Cat2 ET1 ET13 ... **ET2 Cat4 ET7 ET7**

Inputs to dynamic modeling frameworks

Specific engineering questions

Extrapolate climate to DOD training operation questions

Extrapolate climate to DOD training operation questions

28

TESLA-Flood

Framework for downscaling climate variability to coastal impacts

- Occurrence Probabilities
- Return Periods
- Chronological Behavior

Incorporated meta-models for:

- Synthetic Tropical Cyclones
- Intra-daily Storm Hydrographs

Which "compound events" have greater potential for flooding?

twl (m)

swl (m)

-0.5

Which "compound events" have greater potential for flooding?

Regression Model for MMSL — + ~ ~ + ~ ~ ~

 $MMSL(t) = a_0 + a_1 X_1^{a}(t) + a_2 X_2^{a}(t) + a_3 X_3^{a}(t) + (b_0 + b_1 X_1^{a}(t) + b_2 X_2^{a}(t) + b_3 X_3^{a}(t)) \cos(\frac{2\pi t}{265}) + .$

Categorical time series of DWTs for Extratropical Cyclones (ET) and Tropical Cyclones (Cat_i)

$$ET_{t}^{d} \in \{1, ..., n_{ET}\}$$
$$TC_{t}^{d} \in \{C_{0}, ..., C_{5}\}$$
$$DWT_{t} = (ET_{t}^{d} \cup TC_{t}^{d}) \in \{1, ..., n_{DWT}\}$$

Historical Timestack of DWT

Intra-daily simulations: hydrograph approach

Response function: $TWL = R(H_s, T_p) + SS$

Modelling triangles:

$$DWT = \left\{ H_{s}^{(k)}, T_{p}^{(k)}, \theta^{(k)}, SS, \tau, \mu \right\}$$

Timing until TWL_{max}
Average TWL during hydrograph

Tropical Cyclones: Potential Tracks

Use historical TC tracks to identify SLP patterns when TCs are generated/enter the region of interest

Use synthetic tracks to determine likelihood of impacting specific site

(currently using Nakajo et al. 2014 for 1 million synthetic tracks).

How do we decide if a cyclone track is close enough to turn on process-based modeling?

storms local to site (r)

storms in the region (R)

Tropical Cyclones: Potential Tracks

Use historical TC tracks to identify SLP patterns when TCs are generated/enter the region of interest

Use synthetic tracks to determine likelihood of impacting specific site

(currently using Nakajo et al. 2014 for 1 million synthetic tracks).

		R=14							
		CO	C1	C2	C3	C4	C5	TOTAL	
r=2	CO	0.031	0.029	0.032	0.026	0.0095	0.001	0.131	
	C1	0	0.018	0.071	0.118	0.152	0.027	0.387	
	C2	0	0	0.005	0.016	0.115	0.056	0.192	
	C3	0	0	0	0.001	0.031	0.086	0.118	
	C4	0	0	0	0	0.002	0.056	0.058	
	C5	0	0	0	0	0	0.122	0.122	
	ENTRANCE	0.031	0.048	0.108	0.162	0.310	0.348	9.4%	
	NO ENTRANCE	0.969	0.951	0.892	0.838	0.689	0.652	90.6%	
TOTAL		1 (0.367)	1 (0.326)	1 (0.078)	1 (0.103)	1 (0.065)	1 (0.061)	1	

<u>Breakdown by Category:</u> "if a storm is X strength in R, it could be Y strength in r"

Probability of Cyclone affecting local site

Hybrid TC simulations

Hybrid TC simulations

Parameters that define a TC

- pmin, Minimum Pressure
- V, forward velocity
- δ, azimuth
- γ , angle of entrance

4 degree radius centered on San Diego (32.6717,-117.1441)

Synthetic Tracks + MDA Selection Algorithm (Camus et al, 2011)

