Predicting port sedimentation and navigational depths on medium/longterm timescales

Authors: Sten .E. Kristensen, Sanne L. Niemann, Kasper Kaergaard, Rolf Deigaard, Nils Drønen. All from DHI

Presenter: Dr. Kasper H. Kaergaard

Agenda

- Port sedimentation
- Morphological modelling
- Modelling strategy (Hvide Sande, Denmark 2009)
- Modelling strategy (example of port sedimentation, 2018)
- Conclusions

Port sedimentation

- Sandy coastal zone: Potential for enormous masses of sand, which are constantly or episodically worked and re-worked by waves and currents
- Sedimentation in calm waters or areas with locally lowered bed
 - Port basins
 - Approach channels
- Risk for safe navigation
- Restricts the vessel size that the port can accommodate
- Mitigations
 - Maintenance dredging
 - Optimise port design to reduce/avoid sedimentation

2D morphological modelling – MIKE 21 Coupled Model FM

- Bed changes from transport field
- the waves and flow

- 2D morphological model (active in the entrance)
 - Speedup by simulating events with Hs>1.0m (30 days represent 1 year)
 - Updrift bathymetry is fixed (based on analysis of historic profiles)
 - No longterm analysis because updrift bathymetry is fixed
 - Calibration and validation against two storm events
- Strength
 - Use the model to test different scenarios to optimise navigation depth

- Guide the morphology by fixing the updrift morphology
- Strengths:
 - Ensure the right sediment supply to the port area
 - Guide the shape of the bar
- Challenges:
 - No variation in updrift bathymetry
 - Longterm effect: gradual filling of updrift sand fillet
 - Downdrift profile degenerates

Shoreline modelling in MIKE 21 Shoreline Morphology FM

- Shoreline morphology in MIKE 21 FM: Apply the 1-line morphological principle to a coastal area model
 - The shape of the coastal profile is prescribed: Bed level is a function of the distance to the coastline

 Erosion/Deposition is imposed by shifting the coastline onshore/offshore by integrating volume changes from the 2D calculation

- The Shoreline response can be used in a part of the model domain
- Ordinary 2D morphological response can be used in other parts of the model domain

- Use 1-line morphology along open beaches
- Use 2D morphology in areas where the expected reponse is of 2D nature
- The area with 1-line morphology acts as a dynamic boundary condition for the 2D areas
- Two maps: 1) map with active morphology, 2) map with 1D morphology

Validation

- Medium-term updrift sand accumulation
- Monsoon dominated coast
- Resulting transport towards west. Strong seasonal signal in transport direction
- Satellite image analysis used to confirm cyclic behaviour and gradual deposition

- Guide the morphology by prescribing the shape of the updrift profile
 - 1D morphology along open coast
 - 2D morphology in more complicated areas
- Schematised wave climate
- Applicable for longterm predictions (decades)

Computational performance

- Model calculation are done on an unstructured 2D mesh (~170,000 elements)
- Very fine mesh resolution to resolve littoral transport area
 - Predominant waves: ~0.5 − 1.0 m
 - Steep active profile: ~ 1/10
 - The seaward limit of the fine area is determined by the most advanced shoreline to be modelled
- CPU challenges approached by:
 - Schematic wave climate (10 sea-states)
 - Quasi-stationary HD solver

Varying closure depth

- Deposition along east breakwater: Avalanching type of bed changes below "closure depth"
- Height of active profile during erosion is much smaller
- Hysteresis effect on shoreline changes:
 - Slow advance during build-up of sediment reservoir below -2 m
 - Fast advance/retreat where sand is already deposited below -2 m
- The 2D shoreline morphology model implements this behaviour

BC: Before port Construction AC: After port Construction

Conclusions

- Port sedimentation is relevant on short, medium and long time scales
- 2D morphological models are typically used on shorter time scales, possibly with constrained freedom away from the area of interest
- If longterm effects are required, a traditional 1-line model is needed
- With MIKE 21 SM FM the 1-line concept is implemented directly in the morphological response of the 2D model
- 1D morphology has severe restrictions in the predictive capabilities for many complicated applications
- In future versions, the 1-line morphology can be seamlessly combined with traditional 2D morphology for improving the number of use cases
- The present study has shown how the 1D morphology is used as a dynamic boundary condition of the updrift shoreline to improve longterm predictions of port sedimentation

Questions?

