

Wrightsville Beach, NC

July 31st, 2018

Zhanxian Wang Nicole Vanderbeke Brandon Grant Layton Bedsole Johnny Martin Katie Finegan Robert Neal

Creative People, Practical Solutions.®

Topics

- Introduction
- Model Calibrations
- Alternative Analyses
- Summary and Conclusions

Introduction

Wrightsville Beach CSDR Project History

Historical CSDR Material Placement Limits

Purpose

- Evaluate potential local management strategies for WB CSDR project in case federal participation falters
 - Provides best available estimate on design options & project performance for a locally constructed project
 - Assesses storm level of protection benefits & maintenance frequency
 - Incorporates annual shoreline monitoring data to help evaluate the performance of previous CSDR maintenance events
- Use state-of-art coastal engineering tools to estimate project performance and storm level of protection benefits
 - Delft3d focuses on sediment transport & morphologic changes influenced by long-term coastal processes
 - GenCade evaluates shoreline recession & longshore transport based on multi-year wave patterns
 - SBEACH estimates cross-shore storm induced erosion expected in extreme weather events

MODEL CALIBRATIONS

Shoreline Change – GenCade

Volume Change - Delft3D

Storm Protection - SBEACH

Model Calibration - GenCade

- GenCade calibration
 - Shoreline changes observed from NCDCM Digitized wet/dry shorelines from September 2003 to July 2009
 - Including 2006 Nourishment project between WB10 and WB18
 - Nearshore waves obtained from a Delft3D wave model using WIS 1980-2014 hindcast data along its offshore boundary

Model Calibration – SBEACH

SBEACH calibration

- **❖** Based on profile response from a synthetic storm based on combined attributes of Hurricane Arthur (July 2014) & Tropical Storm Ana (May 2015).
- May 2014 and May 2015 profile surveys as the pre- and post-storm conditions respectively
- Nearshore waves obtained from a Delft3D wave model using measured waves at NDBC station 41110 along its offshore boundary

Model Calibration – DELFT3D

- Delft3D calibration
 - Tide and annual average wave conditions schematized to reduce model simulation CPU time significantly
 - Calibration based on measured volumetric changes between May 2015 and March 2016 profile surveys.

Model Calibration – DELFT3D

- Delft3D Validation
 - Same schematized tide and waves as calibration
 - **❖** Based on measured volumetric changes between postnourishment June 2014 and May 2015 profile surveys.

ALTERNATIVE ANALYSIS

Shoreline Change Analysis – GenCade

Volume Change Analysis – Delft3D

Storm Protection Analysis – SBEACH

Design Alternatives

- Assumed Permit Volumes of 500,000 cy (A) & 850,000 cy (B)
 - **❖** Alternative 1 − USACE Template (WB 9.5 − WB 16.5)
 - **❖** Alternative 2 Extend Slightly North (WB 7.5 WB 16.5)
 - Alternative 3 65% North of Pier/35% South (WB 7.5 WB 16.5)
 - Alternative 4 Thinner Template (WB 4.5 WB 20.5)
 - Alternative 5 55% North of Pier/45% South (WB7.5 WB 16.5)

Shoreline Change – GenCade Analysis

Shoreline Change – GenCade Analysis

Final Shoreline Positions

Volume Change – Delft3D Analysis

Volume Changes

Volume Change – Delft3D Analysis

Volume Changes – WB07 to WB17

Year Post-	Alt. 1B Volume Loss		Alt. 2B Volume Loss		Alt. 3B Volume Loss		Alt. 4B Volume Loss		Alt. 5B Volume Loss	
Construction	(CY)	(%)								
Initial Placement	850,000		850,000		850,000		676,000¹		850,000	
1	-217,000	26%	-223,000	26%	-208,000	24%	-183,000	27%	-209,000	25%
2	-393,000	46%	-387,000	46%	-374,000	44%	-321,000	47%	-374,000	44%
3	-525,000	62%	-522,000	61%	-508,000	60%	-436,000	64%	-507,000	60%
4	-639,000	75%	-636,000	75%	-625,000	74%	-535,000	79%	-619,000	73%
5	-737,000	87%	-738,000	87%	-728,000	86%	-626,000	93%	-721,000	85%

Cross-Shore Storm Response – SBEACH Analysis

Level of Protection (LOP)

Storm Return Period	2-YR	5-YR	10-YR	15-YR	20-YR	25-YR	50-YR	100-YR
Significant Wave Height (ft)	16.6	19	20.7	21.8	22.5	23.1	24.9	26.7
Peak Period (s)	11.8	12.2	12.5	12.6	12.7	12.8	13.1	13.3
Water Elevation (ft, NAVD88)	4.3	4.6	5.7	6.2	6.6	6.8	8.70	9.9

Cross-Shore Storm Response – SBEACH Analysis

Level of Protection (LOP)

Duefile	Return Interval Storm (YR) – 850,000 CY Equilibrated Profile						
Profile	Alt. 1B	Alt. 2B	Alt. 3B	Alt. 4B	Alt. 5B		
WB09	5	10	10	10	10		
WB11	25	25	25	25	25		
WB14	25	25	25	25	25		
WB16	25	25	25	25	25		
Governing LOP	5	10	10	10	10		

	Return Interval Storm (YR)				
Profile	Alt. 5 (850,000 CY 5-YR Equilibrated Profile)				
WB09	10				
WB11	25				
WB14	25				
WB16	10				
Governing LOP	10				

Overall Modeling Summary/Conclusions

- ➤ Model results indicate that Alt 3 (65%/35%) and Alt 5 (55%/45%) are preferable options for increasing project benefits
- ➤ Alt 5 is the Preferred Alternative for increasing storm benefits along northern Wrightsville Beach while still maintaining the highest LOP south of Johnnie Mercer's Pier
- Modeling suggest ±15% of placed material volume should remain in project area through 5th year post construction; however, a change in the maintenance interval is not recommended

