## A modified hyperbolic equation to determine equilibrium plan shape of headland bay beaches

Jon Kemp
Benoit Vandeputte (Ghent University)
Thomas Ecleshaw (UCL)
Richard Simons (UCL)
Peter Troch (Ghent University)

36th International Conference on Coastal Engineering 2018
Baltimore, Maryland | July 30-August 3, 2018

## Introduction - coastal developments

- For coastal development projects, artificial beaches are an attractive feature
- Static equilibrium bay theory
- Empirical equations of natural headland bay beaches



## Main empirical equations

## Limitation

- log spiral equation: does not represent the straight section of the beach


## Limitation

- Hyperbolic equation: lack of a tangible wave diffraction point


## Limitation

- Parabolic equation: locating the downcoast control point
- Log spiral: 1965 Yasso
- Parabolic: 1989 Hsu \& Evans (27 beaches)
- Hyperbolic: 1999 Moreno \& Kraus (42 beaches)


## Identifying the downcoast control point



## The problem

- Identifying the downcoast point



## The problem

- Identifying the downcoast point



## The problem

- Identifying the downcoast point



## The solution - Experiment 1

- Assessment of existing beaches



## The solution - Experiment 2

- Wave modelling: REF/DIF
- Tp: 6-15s, Hs:0.5-2.0m, Dir $\pm 40^{\circ}$



## The solution - Experiment 3

- Beach modelling: Beachplan
- 10 year timeseries of waves

BEACHPLAN Model for Varying Wave Height with Breakwater at 300m Offshore


TiVND

## The Solution: Experiment 4

- Remove need of DCP
- Revisit Hyperbolic Tangent Bay Shape Equation

1. Determining the wave diffraction point in the hyperbolic equation



## Assessment of beaches

1. 46 beaches
a) 1 headland
b) Equilibrium
c) Straight section
d) Digitised shoreline


## Determine wave diffraction point

a) Best fit hyperbolic curve in matlab by varying $a, b \& m$ coefficients
i. $\quad m \approx 0.5$
ii. $\quad b=1.573 \cdot a-1.07$
b) Determine wave diffraction point coordinates and scaling (c,d,a)
c) relative to the origin of the hyperbolic tangent equation
i. $\quad X$ coordinate $c / a=1.256$
ii. Y coordinate $\mathrm{d} / \mathrm{a}=0.517$

[^0]

## New hyperbolic equation

1. Create modified hyperbolic tangent equation

$$
y=\left( \pm(0.82 c) \tanh ^{0.55}((1.464 / c) x+0.588)\right)+0.18 c
$$


where:
$y=$ Distance cross shore [m]
$x=$ Distance along shore [m]
$c=$ Orthogonal distance between straight section of the beach and the point of wave diffraction [m]

Only C is required input and is related to beach width

[^1]
## Conclusion: Application of modified hyperbolic equation

## 1. GIS tool

a) Define the diffraction point by the clicking on the headland
b) Define the wave direction
c) Defines the beach width by clicking on the appropriate section of the beach
d) Beach planshape plotted


For more information see the paper or contact me at Jon.Kemp@imdc.be


[^0]:    10-Nov-18 / ICCE 2018/ slide 13

[^1]:    10-Nov-18 / ICCE 2018/ slide 14

