REEF3D::NSEWAVE, A Three-Dimensional Non-Hydrostatic Wave Model on a Fixed Grid

Hans Bihs¹, Arun Kamath¹

¹Department of Civil and Environmental Engineering NTNU Trondheim

Motivation for Wave Modeling

Coastal Engineering

Offshore Structures: Floating and Mooring

Aquaculture

Structures in Waves / Ocean Energy

REEF3D::CFD

- Solves:

- Full 3D Navier-Stokes Equations
- Free Surface: Two-Phase Flow Water & Air
- Turbulence

- Focus on:

- Free Surface Flows
- Wave Hydrodynamics
- Wave Structure Interaction
- Floating Structures
- Open Channel Flow
- Sediment Transport

- The Code:

- C++ (modular & extensible)
- Parallel Computing / HPC
- Open-Source
- Developed at the Department of Civil and Environmental Engineering, NTNU Trondheim

Free Surface Modeling

Interface Capturing REEF3D::CFD

$$\phi(\vec{x},t) \begin{cases} > 0 \text{ if } \vec{x} \in phase \ 1 \\ = 0 \text{ if } \vec{x} \in \Gamma \\ < 0 \text{ if } \vec{x} \in phase \ 2 \end{cases}, |\nabla \phi| = 1$$

$$\phi_t + \vec{u} \cdot \nabla \phi = 0$$

Interface Tracking REEF3D::NSEWAVE

$$\frac{\partial \zeta}{\partial t} + \frac{\partial}{\partial x} \int_{-d}^{\zeta} u dz + \frac{\partial}{\partial y} \int_{-d}^{\zeta} v dz = 0$$

- single-valued free surface
- based on depth-integrated continuity
 - (less interface resolution depended)
- Eulerian mesh: level set function implicitly defines free surface for full NSE-solver
- larger CFL number and dx possible (see results)

Governing Equations

Incompressible RANS Equations:

$$\frac{\partial U_i}{\partial x_i} = 0$$

$$\frac{\partial U_i}{\partial t} + U_j \frac{\partial U_i}{\partial x_j} = -\frac{1}{\rho} \frac{\partial P}{\partial x_i} + \frac{\partial}{\partial x_j} \left[(\nu + \nu_t) \left(\frac{\partial U_i}{\partial x_j} + \frac{\partial U_j}{\partial x_i} \right) \right] + g_i$$

- Temporal Discretization
- Spatial Discretization
- Pressure Solution
- Turbulence Modeling

Spatial Discretization

Convection Discretization: Conservative 5th-order WENO

$$U\frac{\partial U}{\partial x} \approx \frac{1}{\Delta x} \left(\tilde{U}_{i+1/2} U_{i+1/2} - \tilde{U}_{i-1/2} U_{i-1/2} \right)$$

$$U_{i+1/2}^{\pm} = \omega_1^{\pm} U_{i+1/2}^{1\pm} + \omega_2^{\pm} U_{i+1/2}^{2\pm} + \omega_3^{\pm} U_{i+1/2}^{3\pm}$$

- can handle large gradient
- high accuracy
- maintains the sharpness of the extrema

Time Discretization

3rd-order TVD Runge-Kutta:

$$\phi^{(1)} = \phi^n + \Delta t L (\phi^n)$$

$$\phi^{(2)} = \frac{3}{4} \phi^n + \frac{1}{4} \phi^{(1)} + \frac{1}{4} \Delta L (\phi^{(1)})$$

$$\phi^{n+1} = \frac{1}{3} \phi^n + \frac{2}{3} \phi^{(2)} + \frac{2}{3} \Delta L (\phi^{(2)})$$

Adaptive Time-Stepping:

$$\delta t \leq 2 \left(\left(\frac{|u|_{max}}{\delta x} + V \right) + \sqrt{\left(\frac{|u|_{max}}{\delta x} + V \right)^2 + \frac{4|g|_{g1}}{\delta x}} \right)^{-1}$$
 with
$$V = max \left(\nu + \nu_t \right) \cdot \left(\frac{2}{\left(\delta x \right)^2} + \frac{2}{\left(\delta y \right)^2} + \frac{2}{\left(\delta z \right)^2} \right)$$

R constraint:

- implicit diffusion treatment

Pressure

Projection Method:

- 1. solve NS-equation without pressure gradient
- 2. Poisson equation for Pressure

$$-\frac{\partial}{\partial x_i} \left(\frac{1}{\rho(\phi^n)} \frac{\partial p}{\partial x_i} \right) = -\frac{1}{\Delta t} \frac{\partial u_i^*}{\partial x_i}$$

- 3. Iterative Solution of Poisson equation hypre: BiCGStab + geometric multigrid
- 4. Correct the intermediate velocity field

$$u_i^{n+1} = u_i^* - \frac{\Delta t}{\rho(\phi^n)} \frac{\partial p}{\partial x_i}$$

Staggered Grid:

- tight pressure-velocity coupling
- important for 2-phase flow: density jump across the interface

Fc

- Gravity included in RANS-Equations
- P includes hydrostatic and dynamic parts

$$F = \int_{\Omega} (-\mathbf{n}P + \mathbf{n}.\tau) d\Omega$$

Parallelization

- Parallelization
- MPI
- domain decomposition

Scaling test for 3D wave basin

Rectilinear Grid

Rectilinear Grid:

- Implementation of numerical algorithms is straightforward
- level set method is Eulerian
- complex geometries are possible with immersed boundary

Ghostcell Immersed Boundary:

- no extra boundary treatment
- works well with Parallelization with MPI
- works well with immersed boundary

Numerical Wave Tank

other available methods

- active wave absorption (AWA)
- Dirichlet wave generation

2D Wave Tank Tests

Setup:

- 18 m long
- 1 m high
- d=0.505 m
- H = 0.07m
- L = 2 m

Grid:

- dx
 - 0.1 m
 - 0.05 m
 - 0.025 m
 - 0.0125 m

2D Wave Tank Tests

NSEWAVE vs CFD : Beji & Battjes at x = 21m

Non-Breaking Wave Forces

Setup:

- Chen et al., CE 2014
- 18 m long
- 3 m wide
- 1 m high
- d=0.505 m
- H = 0.07m
- L = 2 m
- dx
 - 0.05 m
 - 0.025 m
 - 0.0125 m

Free Surface and Speed-Up

Non-Breaking Wave Forces

(b) dx = 0.0125 m using CFD

Conclusions

- REEF3D::NSEWAVE
 - single-values free surface
 - straightforward addition to existing code
 - reduced computational speed
 - large CFL number
 - larger dx

Good Agreement between REEF3D and experimental data

REEF3D: Open-Source Hydrodynamics

REEF3D::FNPF

REEF3D::SFLOW