

36TH INTERNATIONAL CONFERENCE ON COASTAL ENGINEERING 2018

Baltimore, Maryland | July 30 – August 3, 2018

A MODEL TO SIMULATE BEACH PROFILE EVOLUTION INDUCED BY STORMS

Jie Zhang^a, Magnus Larson^a, and Zhenpeng Ge^b

^aWater Resources Engineering, Lund University, Sweden

^bState Key Laboratory of Estuarine and Coastal Research, East China Normal University, China

Presentation Overview

- Objectives
- Components of new model
- SUPERTANK project
- Model simulations
- Further developments
- Conclusions

Background

Objectives

Develop a numerical model to simulate cross-shore sediment transport and beach profile evolution with focus on storm impact.

- Describe in detail the response of the **subaerial region**, including the foreshore, berm, and dune.
- Include relevant **physics** in combination with extensive empirical information.
- Validate the model based on **a variety of data** on profile evolution.

Components of new model

Wave transformation

Random breaker decay model by Larson (1995):

$$\frac{d}{dx} \left(F_{rms} \cos \varphi \right) = \frac{\kappa}{d} \left(F_{rms} - F_{stab} \right)$$
$$F_{rms} = \frac{1}{8} \rho g H_{rms}^2 C_g$$
$$F_{stab} = \frac{1}{8} \rho g \left((1 - \alpha) H_n^2 + \alpha \Gamma^2 d^2 \right) C_g$$

Mean cross-shore current (undertow)

Undertow model by Rattanapitikon and Shibayama (2000)

monochromatic waves

Stoke's drift wave breaking

$$U_m = k_1 \frac{BgH_{rms}^2}{Cd_t} + k_2 \frac{BCH_{mean}}{d_t} \alpha$$

random waves (Larson et al., 2015)

Bed Shear Stresses

Shear stresses depend on friction factors determined by bed roughness arising from:

- Skin friction $(k_{s,g})$ \rightarrow sediment grain size d_{50}
- Bed forms $(k_{s,r}) \longrightarrow$

Sediment transport motion (k_{s,sf})
The bed shear is calculated from (for currents, waves, and combined) (Soulsby, 1997):

 $\tau_b = \frac{1}{2} \rho f U^2$

Roughnesses f_c and f_w for a current and waves respectively. The friction factor (f_{cw}) is weighted according to f_c and f_w .

Bed load transport

Contributions from wave asymmetry (onshore) and undertow (offshore), the generalized formula developed by Larson et al. (2015).

Bed load transport due to wave asymmetry

$$q_{ba} = a_w \sqrt{\frac{f_w}{2}} d_{50} \hat{u} K_a \theta_{cw,m} \exp\left(-b\frac{\theta_{cr}}{\theta_{cw}}\right)$$

Bed load transport due to undertow

$$q_{bu} = a_c \sqrt{\frac{f_c}{2}} d_{50} U_m \theta_{cw,m} \exp\left(-b \frac{\theta_{cr}}{\theta_{cw}}\right)$$

Suspended load transport

The expressions are given in Camenen and Larson (2008)

From bed to trough level (offshore):

$$q_{su} = \int_{0}^{d_{t}} U_{m} c_{R} \exp\left(-\frac{W_{s}}{\varepsilon} z\right) dz = \frac{U_{m} c_{R} \varepsilon}{W_{s}} \left(1 - \exp\left(-\frac{W_{s}}{\varepsilon} d_{t}\right)\right)$$

From trough to crest level (onshore):

$$q_{sb} = \int_{d_t}^{d_c} U_b c_R \exp\left(-\frac{W_s}{\varepsilon} z\right) dz = \frac{U_b c_R \varepsilon}{W_s} 2 \sinh\left(\frac{HW_s}{2\varepsilon}\right) \exp\left(-\frac{W_s h}{\varepsilon}\right)$$

The net transport due to suspended load is q_{su} - q_{sb}

Swash zone transport

11

The net sediment transport in the swash zone is given by Larson et al. (2004):

$$q_{bs} = K_c \frac{\tan \phi_m}{\tan^2 \phi_m - (dh/dx)^2} \frac{u_o^3}{g} \left(\frac{dh}{dx} - \tan \beta_e\right) \frac{t_o}{T}$$

Self-similar velocity variation:

$$u/u_o = \Gamma((t-t_s)/t_o)$$

Ballistics theory is employed to determine the velocity and duration

$$u_o / u_s = \sqrt{1 - h/R}$$
$$t_o / T_s = \sqrt{1 - h/R}$$

Influence of Long Waves on Swash-Zone Transport

The effects of long waves are described through an enhanced runup height obtained based on a probabilistic approach:

- pdf for runup height (R) based on a transformed Rayleigh distribution (Hunt formula)
- pdf for water elevation at shoreline (η) uniform with a constant amplitude (a)

SUPERTANK data collection project

(Kraus and Smith, 1994)

-								
Table 1-1 Summary of SUPERTANK Tests								
				Representative Significant Wave				
	Test Number	Description	Date	Height, m	Period, sec			
	ST_10	Erosion toward equilibrium, random waves	8/05 - 8/09	0.8	3.0			
	ST_20	Acoustic profiler tests (random, monochromatic)	8/11 - 8/13	0.2-0.8	8.0-3.0			
	ST_30	Accretion toward equilibrium, random waves	8/14 - 8/16	0.4	8.0			
	ST_40	Dedicated hydrodynamics	8/19 - 8/21	0.2-0.8	8.0-3.0			
	ST_50	Dune erosion, Test 1 of 2	8/22	0.5-0.8	6.0-3.0			
	ST_60	Dune erosion, Test 2 of 2	8/23	0.5-0.7	6.0-3.0			
	ST_70	Seawall, Test 1 of 3	8/26	0.7-1.0	4.5			
	ST 80	Seawall, Test 2 of 3	8/27	0.7	4.5			
	ST 90	Berm flooding, Test 1 of 2	8/28 a.m.	0.7	3.0			
	ST_A0	Foredune erosion	8/28 p.m.	0.7	3.0			
	ST_BO	Dedicated suspended sediment	8/29 - 8/30	0.3-1.0	103.0			
	ST_CO	Seawall, Test 3 of 3	9/02	0.4-0.8	8.0-3.0			
	ST_DO	Berm flooding, Test 2 of 2	9/03 a.m.	0.7	3.0			
	ST_EO	Leser Doppler velocimeter, Test 1 of 2	9/03 p.m.	0.2-0.8	3.0			
_	ST_FO	Leser Doppler velocimeter, Test 2 of 2	9/04 a.m.	0.2-0.7	8.0			
	ST_GO	Erosion toward equilibrium, mono. waves	9/04 p.m.	0.8	3.0			
	ST_HO	Erosion, transition toward accretion, mono. waves	9/05 a.m.	0.5-0.8	4.5-3.0			
	ST IO	Accretion toward equilibrium, mono. waves	9/05 - 9/06	0.5	8.0			
	ST JO	Narrow-crested offshore mound	9/09 - 9/11	0.5-0.7	8.0-3.0			
	ST КО	Broad-crested offshore mound	9/12 - 9/13	0.5-0.7	8.0-3.0			

The computational region: 60 m Grid size $\Delta x : 0.5$ m Time step $\Delta t : 60$ s. The still-water level: 3.0 m Median grain size $D_{50}: 0.22$ mm.

Calibrated coefficients:

- related to sediment transport
- the effects of long waves

Case	Rms wave height (m)	Mean wave period (s)	Duration (min)
ST_10	0.50-0.81	2.5-3.1	270
ST_90	0.48-0.53	2.4-2.5	50
ST_J0	0.45-0.46	2.4-2.5	150
ST_K0	0.46-0.47	2.5	220

Model agreement with data is described by the rms error (RMSE) and the Brier Skill Score (BSS)

Case	RMSE	BSS
ST_10	0.058	0.841
ST_90	0.044	0.779
ST_J0	0.062	0.689
ST_K0	0.073	0.622

Further developments

- Include dune erosion and overwash
- Improve description of long wave effects
- Include other transport mechanisms
- Validate with field data

Conclusions

- A numerical model of beach profile evolution with emphasis on describing subaerial change was developed.
- Simulations were performed for a wide range of experimental cases from the SUPERTANK data collection project to validate the model.
- The results obtained by the model are in good agreement with the measured data indicating that the model is **robust and reliable** in simulating beach profile evolution for the cases studied.
- *****Dune erosion and overwash should be included in the model
- *****Extensive model validation with field data is required
- *The description of long waves and their effects on profile evolution needs further consideration

Thank you!