ADAPTATION PATHWAY FOR A BARRIER ISLAND TO FUTURE HURRICANES

Abstract No. 1553

STEPHANIE M. SMALLEGAN, PH.D. EVAN MAZUR

36TH INTERNATIONAL CONFERENCE ON COASTAL ENGINEERING

AUGUST 3, 2018

Introduction

- ▶ 6.5% of coastlines are barrier islands
- Protects mainland from storm impacts
- Vary by several island characteristics and regional hydrodynamics

Objectives

 Determine impacts of storm surge + waves and sea level rise on a developed barrier island

Objectives

- Determine impacts of storm surge + waves and sea level rise on a developed barrier island
- Create a simple pathway for coastal managers to use as a decision making guide

Objectives

- Determine impacts of storm surge + waves and sea level rise on a developed barrier island
- Create a simple pathway for coastal managers to use as a decision making guide
- Establish an appropriate, meaningful level of accuracy
 - Location specific
 - Include SLR scenarios by observed levels, not by a timeline
 - Consider realistic storms and their impacts
 - Implement realistic strategies

Hurricane Sandy (2012)

- Landfall: 29 October 2012 at 2330 GMT
- Hybrid hurricane + Nor'easter
- 280 km radius
- 130 km/h maximum sustained winds
- 945 mb minimum pressure
- ▶ 159 fatalities
- > \$71 billion in damages

Study Area

- Bay Head, NJ
- 1260 m rock seawall buried beneath dunes
- Seawall often exposed during storms

380 m

Bay Head, NJ

Pre-Hurricane Sandy

Post-Hurricane Sandy

Images from Google Earth (2018)

- Hurricane Sandy
- > 74-hour storm
- At storm peak:
 - $H_s = 8.0 \text{ m}$
 - $T_p = 16 s$
 - θ = 85° (approx. shore normal)

- Present day: SLR = 0 m
 - HurricaneSandy surgeunchanged

- Morphological change simulated with XBeach (Roelvink et al., 2009)
- Hard structures are indestructible
- Validation published in Smallegan et al. (2016)

Sea Level Rise (SLR)

- Present day: SLR = 0 m
 - Hurricane Sandy surge unchanged

- Future:
 - ► SLR = +0.2 m, +1.0 m, +2.2 m
 - Both ocean and bay surge raised

Adaptation Strategies

Adaptation Strategies

A: Raise beach

- C: Raise seawall
- E: Raise island
 - + seawall

- ▶ B: Raise dune + beach
- D: Raise island

Strategy (sediment volume	Beach raised by	Dune raised by	Seawall raised by			Back barrier raised to minimum
added, m ³)	SLR	SLR	0.5 m	1.0 m	2.0 m	elevation
EC						
A (8,32,71)	X					
B (11, 68, 145)	X	X				
C (11, 68, 145)	X	X	Х			
C1.0 (10, 67, 144)	X	X		Χ		
C2.0 (7, 64, 141)	X	X			Х	
D (13, 128, 322)	X	X				Х
E (13, 128, 322)	X	X	Х			X
E1.0 (12, 127, 321)	X	X		Х		X
E2.0 (9, 124, 318)	Х	Х			Х	Х

Adaptation Strategies

- A: Raise beach
- B: Raise dune + beach
- C: Raise seawall
- D: Raise island

- E: Raise island
 - + seawall

Remaining sediment

volume:

$$V(m^3) = \int_{y_1}^{y_2} \int_{x_1}^{x_2} z_{bf} dx dy$$

Adaptation Pathway

- Create pathway using strategies A – E
 - Function of SLR
 - No timeline associated with pathway

Adaptation Pathway

- Create pathway using strategies A – E
 - Function of SLR
 - No timeline associated with pathway

But this is designed with only one storm...

Expanding the Analysis

- NACCS: North Atlantic Coast Comprehensive Study (Cialone et al., 2015)
 - Statistically-comprehensive set of storms that could practically occur
 - Accessed through the Coastal Hazards System (Melby et al., 2015)
- 1050 storms * 3 SLR scenarios * 5 strategies = >15k simulations!
 - Not feasible...
- Subset of storms based on hydrodynamics

- NACCS Storm 391
- ▶ 48-hour storm
- At storm peak:
 - $H_s = 7.8 \text{ m}$
 - $T_p = 18 \text{ s}$
 - θ = 110° (approx. shore normal)

- NACCS Storm 391
- ▶ 48-hour storm
- At storm peak:
 - $H_s = 7.8 \text{ m}$
 - $T_p = 18 \text{ s}$
 - θ = 110° (approx. shore normal)

- Present day: SLR = 0 m
 - Storm 391 surge unchanged

Sea Level Rise (SLR)

- Present day:SLR = 0 m
 - Storm 391 surge unchanged

Sandy vs Storm 391

Storm 391 resulted in more erosion

Sea Level Rise (SLR)

- Present day: SLR = 0 m
 - Storm 391surgeunchanged

- Future:
 - ► SLR = +0.2 m, +1.0 m, +2.2 m
 - Both ocean and bay surge raised

Present/Future Work

- Clear lines on the pathway
- Include life cycle cost analyses

Create pathway for Dauphin Island, AL

Questions

This material is based upon work supported by the National Oceanic and Atmospheric Administration, U.S. Department of Commerce, via award number NA14OAR4170093 to Virginia Sea Grant; the National Science Foundation Graduate Research Fellowship Program via grant number DGE-1148903; and National Science Foundation via grant number EAR-1312813.