

36TH INTERNATIONAL CONFERENCE ON COASTAL ENGINEERING 2018

Baltimore, Maryland | July 30 - August 3, 2018

The State of the Art and Science of Coastal Engineering

MODELING EFFECTS OF VEGETATION ON SETUP AND RUNUP OF RANDOM WAVES

Ling Zhu^a, Qin Chen^a, Navid Jafari^b, Julie D. Rosati^c, Yan Ding^c

a Northeastern University, Boston, MA, USA **b Louisiana State University, Baton Rouge, LA, USA** c U.S. Army Corps of Engineers, USA

Department of

Civil & Environmental Engineering

Photos taken on April 14, 2018 capturing a major storm strike the shoreline in Terrebonne Bay, LA. (Photo courtesy: Navid Jarafi)

- Vegetation attenuates wave heights due to **instantaneous drag force**.
- Vegetation suppresses the increase of mean water level due to **phase-averaged drag force**.
- Vegetation reduces the wave runup due to (i) altered wave height distribution, and (ii) reduced wave heights and MWL.

Objectives

- Developing a model of phase-averaged drag force (F_n) that could be used in phase-averaging wave models (e.g. CSHORE*).
- Developing a model of wave runup $(R_{2\%})$ based on the Weibull distribution accounting for the effects of vegetation.
- Implementing the two developed models in CSHORE, and studying the effects of vegetation on (i) wave height decay, (ii) wave setup, and (iii) wave runup using field collected data.

CSHORE*: Cross-Shore numerical model (Johnson et al. 2012; Kobayashi et al. 2008).

theastern University

Phase-Averaged Depth-Integrated Drag F_{12}

\bullet Definition of F_v :

Phase-Averaged Depth-Integrated Drag F_{ν}

Definition of F_p :

$$
F_v = \overline{\int_{-h}^{\min(-h+h_v, \eta)} \frac{1}{2} \rho C_D b_v N_v u |u| dz} \quad \frac{\text{SWL}}{\equiv 4}
$$

Attempts to model F_{ν} : **Method 1:** $F_v = (2n - 0.5) \frac{\epsilon}{C_a}$ based on assumption: $\partial \bar{\eta}/\partial x = 0$ over flat bottom. submerged emergent ○ Method 2: $F_v = \begin{cases} \frac{1}{2} \rho C_D b_v N_v \overline{u_0 |u_0| \eta} & h_v \geq h \\ 0 & h_v < h \end{cases}$ from linear wave theory (Dean & Bender 2006).

Northeastern University
College of Engineering

Phase-Averaged Depth-Integrated Drag F_n

Definition of F_p :

$$
F_v = \overline{\int_{-h}^{\min(-h+h_v, \eta)} \frac{1}{2} \rho C_D b_v N_v u |u| dz}
$$

- Attempts to model F_v : **Method 1:** $F_v = (2n - 0.5) \frac{\epsilon}{C_a}$ based on assumption: $\partial \bar{\eta}/\partial x = 0$ over flat bottom. submerged emergent ○ Method 2: $F_v = \begin{cases} \frac{1}{2} \rho C_D b_v N_v \overline{u_0 |u_0| \eta} & h_v \geq h \\ 0 & h_v < h \end{cases}$ from linear wave theory (Dean & Bender 2006).
	- For submerged vegetation $(h_v < h)$ (or submerged part of emergent vegetation):
		- \checkmark Linear waves $\hat{\to}$ symmetric $u \hat{\to} F_v = 0$.
		- Nonlinear waves \rightarrow asymmetric $u \rightarrow F_v \neq 0$. $\sqrt{ }$ (Guannle et al. (2015) approximated $F_{v,sub} = (h_v/h)F_{v,eme}$.)
	- Method 3: Zhu et al. (2018) based on Stoke's 2nd-order wave theory. \circ
	- Method 4: van Rooijen (2016) based on a wave shape model. \circ

SWL

Our Proposed Parametric Model of $F_{12} - 1$

 log_{10} H/gT²

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

 m is a function of:

- \circ h_{ν}/h ,
- \circ H/h , and
- o Ursell number $Ur (= HL^2/h^3)$.
- A total of 1188 numerical tests with $h_v/h \in [0.1, 0.9]$ are conducted to determine m using stream function wave theory. 3

$$
F_{\nu} = \frac{1}{2} \rho C_D b_{\nu} N_{\nu} \overline{u_c |u_c| \eta} \left(\frac{h_{\nu}}{h}\right)^m
$$
\n
$$
\overline{\mathbf{S}F^*}
$$
\n
$$
\overline{\mathbf{LWT^*}}
$$

١À. SF*: stream function wave theory, LWT*: linear wave theory.

Our Proposed Parametric Model of F_{ν} – II

For regular waves: \bullet

$$
F_v = \frac{1}{12\pi} \rho C_D b_v N_v \omega^2 H^3 \frac{\cosh^2 kh_v}{\sinh^2 kh} \cdot \left(\frac{h_v}{h}\right)^m
$$

Our Proposed Parametric Model of F_{ν} – II

For regular waves:

$$
F_v = \frac{1}{12\pi} \rho C_D b_v N_v \omega^2 H^3 \frac{\cosh^2 kh_v}{\sinh^2 kh} \cdot \left(\frac{h_v}{h}\right)^m
$$

For random waves, with the following assumptions: \bullet

- narrow-banded wave spectrum \circ
- unidirectional waves \bigcap
- wave heights follow the Rayleigh distribution \circ

The expected value of F_v :

$$
\langle F_{\nu} \rangle = \frac{1}{16\sqrt{\pi}} \rho C_D b_{\nu} N_{\nu} \cdot \overline{\omega}^2 H_{rms}^3 \frac{\cosh^2 \overline{k} h_{\nu}}{\sinh^2 \overline{k} h} \cdot \left(\frac{h_{\nu}}{h}\right)^{\widetilde{m}}
$$

where $\overline{\omega} = \frac{2\pi}{\overline{T}}$, \overline{T} is the mean wave period ($\approx T_p/1.35$).
 \widetilde{m} is determined using H_s/h and $\frac{H_s \overline{L}^2}{h^3}$.

Model of F_{ν} **for Waves Coupled with Weak Currents**

- With $u = u_w + V_0$, F_v can be partitioned into two parts (Guannel et al. 2015; Svendsen 2006):
	- \circ $F_{v,w}$ due to pure waves
	- \circ $F_{v,cw}$ due to wave-current interactions

$$
F_{v,total} \approx \frac{1}{2} \rho C_D b_v N_v \left(\int_{-h}^{\min(-h+h_v, \eta)} u_w |u_w| dz + 2 \int_{-h}^{\min(-h+h_v, \eta)} V_0 |u_w| dz \right)
$$

Model of F_{12} **for Waves Coupled with Weak Currents**

- With $u = u_w + V_0$, F_v can be partitioned into two parts (Guannel et al. 2015; Svendsen 2006):
	- \circ $F_{v,w}$ due to pure waves
	- \circ $F_{v,cw}$ due to wave-current interactions

INTERNATIONAL CONFERENCE Baltimore, Maryland | July 30 - August 3, 2018

Our Proposed Model of Wave Runup

• The wave height distribution in vegetation follows the Weibull distribution (Jadhav and Chen 2013), whose cumulative distribution function is

$$
F(\xi) = e^{-\left(\frac{\xi}{1 - k\xi}\right)^2} \quad \text{where} \quad \xi = \frac{H}{H_{rms}}
$$

Our Proposed Model of Wave Runup

• The wave height distribution in vegetation follows the Weibull distribution (Jadhav and Chen 2013), whose *cumulative distribution function* is

$$
F(\xi) = e^{-\Phi^2 \left(\frac{\xi}{1 - k\xi}\right)^2} \quad \text{where} \quad \xi = \frac{H}{H_{rms}}.
$$

We propose a model of wave runup as:

$$
R_{2\%} = \overline{\eta_r} + \frac{c}{\sqrt{2}(1+\kappa c)} \left(R_{1/3} - \overline{\eta_r} \right) \quad \text{where } C = \frac{\sqrt{\ln(50)}}{\phi}.
$$

 \circ The shape parameters ϕ and κ in the Weibull distribution are empirically determined in Jadhav and Chen (2013).

○ Rayleigh distribution leads to
$$
R_{2\%} = \overline{\eta_r} + 1.40(R_{1/3} - \overline{\eta_r}).
$$

$$
\frac{c}{\sqrt{2}(1+\kappa c)} \in [0.855, 1.42] \text{ for KC } \in [0, 140].
$$

CSHORE Model Validation

- The parametric model of F_{ν} is validated indirectly by
	- Implementing $F_v = F_{v,w} + F_{v,cw}$ in the cross-shore momentum balance equation in CSHORE,
	- Validating the modeled wave height (H_{rms}) and mean water level (MWL, $\bar{\eta}$) in vegetation with laboratory measurements (Wu et al. 2011).

- Chen and Zhao (2012). "Theoretical models for wave energy dissipation caused by vegetation." J. Eng. Mech., vol. 138(2), pp. 221-229.
- Wu et al. (2011). "Investigation of surge and wave reduction by vegetation." SERRI Report, 80037-01.

CSHORE Model Validation – Wave Attenuation

The modeled and measured H_{rms} compare well.

Northeastern University
College of Engineering

CSHORE Model Validation – Wave Setup

- The model overestimates the MWL $(\bar{\eta})$ for cases with greater wave nonlinearity due to
	- \circ overestimation of the mean current in vegetation
	- \circ uncertainties in the effects of hydrodynamics from wave crest and trough on F_{ν} .

CSHORE Model Validation – Wave Setup

- The model overestimates the MWL $(\bar{\eta})$ for cases with greater wave nonlinearity due to
	- overestimation of the mean current in vegetation,
	- \circ uncertainties in the effects of hydrodynamics from wave crest and trough on F_{ν} .

To account for the uncertainties in the mean current, different C_D are used in $F_{v,w}$ and $F_{v,cw}$.

36TH INTERNATIONAL CONFERENCE ON COASTAL ENGINEERING 2018 Baltimore, Maryland | July 30 - August 3, 2018

Northeastern University College of Engineering

Application of CSHORE with Developed Models

CSHORE with

- \circ energy dissipation rate ϵ_{ν} modeled from Chen and Zhao (2012),
- \circ the proposed parametric model of F_{ν} ,
- \circ the proposed model of $R_{2\%}$ based on Weibull-distribution,

is applied to simulate wave attenuation, wave setup and runup using field data collected from Tropical Storm Lee (Jadhav et al. 2013).

Terrebonne Bay, Louisiana coast

Modeling of Wave Attenuation

- The measured wave spectra is used in the energy dissipation model.
- The drag coefficient is determined as

 $C_D = 70 K C^{-0.86}$ (Jadhav et al. 2013) where $KC = (u_b \overline{T})/b_v$, $u_b = (H_{rms}\overline{\omega})/(2 \sinh \overline{k}h)$.

Modeling of Wave Attenuation

- The measured wave spectra is used in the energy dissipation model.
- The drag coefficient is determined as

Baltimore, Maryland | July 30 - August 3, 2018

 $C_D = 70 K C^{-0.86}$ (Jadhav et al. 2013) where $KC = (u_b \overline{T})/b_v$, $u_b = (H_{rms}\overline{\omega})/(2 \sinh \overline{k}h)$.

College of Engineering

Modeling of Wave Setup

- A dike (1:4) is added after the vegetation.
- The effects of vegetation submergence and length of patch are investigated.

 0.5

- o Test 0: use measured vegetation conditions
- o Test 1: remove vegetation
- \circ Test 2: half the length of vegetation patch
- \circ Test 3: half the length of vegetation patch & double the vegetation height h_v

Northeastern University

College of Engineering

36TH INTERNATIONAL CONFERENCE ON COASTAL ENGINEERING 2018 Baltimore, Maryland | July 30 - August 3, 2018

 $0 \frac{R}{D}$

0.05

0.1

0.15

0.2

0.25

 $(T1)$

0.3

0.35

0.4

Modeling of Wave Runup

- A dike (1:4) is added after the vegetation.
- The effects of vegetation submergence and length of patch are investigated.
	- o Test 0: use measured vegetation conditions
	- o Test 1: remove vegetation

3

2.5

 $\begin{array}{cc} R_{2\%}/H_{rms,i}~({\rm T1})\\ \Delta & \rm{in}~~ \sim\\ \end{array}$

 0.5

0

 $\overline{0}$

 \circ Test 2: half the length of vegetation patch

+150% +50%

 \circ Test 3: half the length of vegetation patch & double the vegetation height h_y

 $\overline{2}$

 $R_{2\%}/H_{rms,i}$ (T0)

Northeastern University

College of Engineering

Conclusions

- A parametric model of phase-averaged drag force (F_n) based on stream function wave theory is developed and extended to random waves.
	- \circ In the presence of weak currents, F_{12} can be partitioned into two equally significant parts:
		- $\triangleright F_{v,w}$ due to pure wave,
		- $\triangleright F_{v,cw}$ due to wave and current interactions.
- A model of wave runup $(R_{2\%})$ is developed based on Weibull distribution.
- The effects of vegetation on the wave attenuation, wave setup, and wave runup are modeled using an improved version of CSHORE equipped with the developed models of F_{12} and R_{20} .
- Field measurements of wave setup and runup in the presence of vegetation are needed for further model validation.

theastern University

Acknowledgments

• Support for this study has been provided in part by the U.S. Army Corps of Engineers and the National Science Foundation (NSF) (Grant CCF-153956).

Thank You! Questions?

Procedure of Computing m

- Compute Ur as $Ur = HL^2/h^3$ for regular waves and $H_s\overline{L}^2/h^3$ for irregular waves.
- Compute α_1 and α_2 as

$$
\alpha_1 = \begin{cases}\n-0.1 \frac{h_v}{h} & 0.2 \le \frac{h_v}{h} \le 0.8 \\
1.09 & \frac{h_v}{h} < 0.2 \\
1.03 & \frac{h_v}{h} > 0.8\n\end{cases}, \alpha_2 = 0.35 \left(\frac{h_v}{h}\right)^3 - 0.16 \left(\frac{h_v}{h}\right)^2 + \frac{h_v}{h} + 0.65.
$$

Determine m through linear interpolation.

Model Validation - Wave Setup

• The parametric model produces more accurate MWL. del produces more accurate M\

Northeastern University
College of Engineering

Factor in Runup Model

