ICCE '18 - Baltimore MD USA

Session: Beach Nourishment Projects

Tuesday - 31 July - 4:30-4:50 pm

Five Key Elements For A Sustainable Beach Nourishment Program

Tim Kana PhD PG Haiqing Liu Kaczkowski PhD PE Steven B Traynum MS

Based on Chap 38 in:

Young Y Kim (ed) Handbook of Coastal Engineering – 2nd Edition World Scientific Singapore

Outline

- Motivation
- Five Key Design Elements
 - Shoreline Inventory
 - Erosion Database
 - Conceptual
 Geomorphic Models
 - Target Beach Condition
 - Identify Borrow Area
- Sustainability

South Carolina USA

307 km Sandy Coast
35 Tidal Inlets
52% Developed and Managed
33% Nourished 1954 to Present

1980-2010 30.1 million m³ Nourishment Volume

Source: Kana 2012 Shore & Beach

Importance of Preliminary Design

Build on Prior Knowledge

Rapidly Quantify the Problem

Establish a Project Scope and Scale

Provide a Realistic Budget to the Client

Formulations "Locked In" at Time of Permitting

Shoreline Inventory

South Carolina Holocene Barrier Island Systems – Santee & Cooper River Basins

Mega Scale Geologic Controls & Sediment Sources

Net Longshore Transport Directions & Rates (in Millions m³/yr)

Erosion Database

1980s - Before reliable beach surveys to closure...

-Beach Cycle – Winter-Summer/Storm-Post-Storm
-Linear vs Volumetric Measures
-Subaerial Surveys vs Profiling to DOC

Determine Littoral Boundaries

Beach Condition as Measured by Unit Profile Volumes

Convert Unit Area, A, to Unit Volume to DOC, Ve, for a simple measure of profile condition – irrespective of beach stage

Determining Site Specific Sand Deficits

From Kana et al 2015 in Design of Coastal Structures and Sea Defenses (YC Kim ed)

Geomorphic Models of Controlling Processes

Decadal-scale
Surveys
Particularly
Around Inlet
Deltas

Define A Target Beach Condition

Performance (f Volume)

\$/m

\$\$/m

\$\$\$/m

After CSE 1984

Sustained Increase in Beach Volume Four Nourishment Events over 30 years

Identify Borrow Site

Sand Search & Confirmation Outer Banks - Cores ~ 8 ft long

Phase 1 - Potential Borrow Area

Phase 2 – Detailed Surveys to Confirm

- More Offshore Cores For Design
- More Beach Samples -

Goal – Match Sediments
Reduce Uncertainty

Native vs Borrow Sediments

Grain Size Distributions =

- The Proportions of Various Sand Sizes On the "Native" Beach and In the Borrow Areas
- A Perfect Borrow Source Matches
 The Native Sand

Sustainability South Carolina USA

1980-2010

~80% of developed beaches wider

Average Annual Expenditures for Beach Improvement: ~\$128 per meter per year

Present Value of Developed

Oceanfront –

\$16,000 – 165,000 per meter of beachfront

Source: Kana 2012 Shore & Beach

Key to Sustainability

Measure Measure Measure

Continually Update Costs, Impacts And Benefits

Source: Kana 2012 Shore & Beach

