

2D OVERTOPPING AND IMPACT EXPERIMENTS IN SHALLOW FORESHORE CONDITIONS

Vincent Gruwez, I. Vandebeek, D. Kisacik, M. Streicher, T. Verwaest, A. Kortenhaus, P. Troch

www.crestproject.be

Department of Civil Engineering

	Hofland <i>et al.</i> (2017)		
	Deep [14,24,3]	$\frac{h_{\rm t}}{H_{\rm m0,o}} > 4$	
	Shallow [14,24]	$1 < \frac{h_{\rm t}}{H_{\rm m0,o}} < 4$	
	Very Shallow [28]	$0.3 < \frac{h_{\rm t}}{H_{\rm m0,o}} < 1$	
$H_{m0,o}; T_{m-1,0,o}$	Extremely Shallow [1,5] ^a	$\frac{h_{\rm t}}{H_{\rm m0,o}} < 0.3$	Little
		$H_{m0,t}$; $T_{m-1,0,t}$ h_t	
Foreshore slope range	e Belgian coast: 1/20 – 1/90		
and the second s			

ţ

© Vincent Gruwez (2017)

Numerical modelling

Experimental modelling

Field measurements

Main objectives of the 2D experiments

- 1. Effect foreshore and its slope on:
 - a. <u>Wave transformation</u> up to the dike toe
 - b. <u>Wave overtopping</u> over the sea dike and <u>wave impact forces</u> on buildings on top of the dike
- 2. Providing a validation dataset for the numerical modelling

2D Experimental modelling – Overview

High spatial resolution of surface elevations

Wave overtopping

Wave forces

2D Experimental modelling – Model setup

UNIVERSITY

Department of Civil Engineering – Faculty of Engineering & Architecture

2D Experimental modelling – Test matrix

test ID	Order	ho	H _{m0,o}	T _{p,o}	$\cot(\theta)$	ht/H _{m0,0}	HSR	OVT	WIF
[-]	[-]	[m]	[m]	[s]	[-]	[-]	[-]	[-]	[-]
RS01	2^{nd}	0.65	0.20	2.4	20, 35, 50 (1:25), 50 (1:35), 80	0.06	No	Yes	Yes
RF01	1^{st}	0.65	0.20	2.4	35, 50 (1:25)	0.06	No	Yes	Yes
RS02	2^{nd}	0.65	0.20	2.0	20, 35, 50 (1:25), 50 (1:35), 80	0.06	Yes*	Yes	No
RS03	2^{nd}	0.65	0.20	1.6	20, 35, 50 (1:25), 50 (1:35), 80	0.07	No	Yes	No
RS04	2^{nd}	0.65	0.12	1.6	20, 35, 50 (1:25), 50 (1:35), 80	0.10	Yes*	No	No
RS05	2^{nd}	0.65	0.08	2.4	20, 35, 50 (1:25), 50 (1:35), 80	0.15	Yes	Yes	Yes
RF05	1 st	0.65	0.08	2.4	35, 50 (1:25)	0.15	Yes	Yes	Yes
RS06	2^{nd}	0.69	0.20	2.4	20, 35, 50 (1:25), 50 (1:35), 80	0.26	Yes*	Yes	Yes
RS07	2^{nd}	0.69	0.20	2.0	20, 35, 50 (1:25), 50 (1:35), 80	0.26	No	Yes	Yes
RS08	2^{nd}	0.69	0.20	1.6	20, 35, 50 (1:25), 50 (1:35), 80	0.26	No	Yes	Yes
RS09	2^{nd}	0.69	0.12	1.6	20, 35, 50 (1:25), 50 (1:35), 80	0.43	Yes*	Yes	Yes
RS10	2^{nd}	0.69	0.12	2.4	20, 35, 50 (1:25), 50 (1:35), 80	0.43	No	Yes	Yes
RS11	2^{nd}	0.69	0.08	2.4	20, 35, 50 (1:25), 50 (1:35), 80	0.65	Yes	Yes	Yes
RF11	1^{st}	0.69	0.08	2.4	35, 50 (1:25)	0.65	No	Yes	Yes
RS12	2^{nd}	0.69	0.06	2.4	20, 35, 50 (1:25), 50 (1:35), 80	0.87	No	Yes	Yes
RS13	2^{nd}	0.69	0.04	2.4	20, 35, 50 (1:25), 50 (1:35), 80	1.30	No	Yes	Yes

*short test: ~100 waves instead of ~1000 waves

First results – Wave transformation over the foreshore

Department of Civil Engineering – Faculty of Engineering & Architecture

UNIVERSITY

First results – Wave overtopping

Van Gent (1999), recalibrated and extended with equivalent slope concept by Altomare *et al.* (2016):

First results – Spectral wave period $T_{m-1,0}$ at the dike toe

$$\theta T_{m-1,0,o} \sqrt{g/H_{m0,o}} < 0.62$$

test ID	ho	H _{m0,o}	Tm-1,0,0	1/20	1/35	1/50	1/80
[-]	[m]	[m]	[s]	[-]	[-]	[-]	[-]
RS01	0.65	0.20	2.2	0.76	0.44	0.31	0.19
RS02	0.65	0.20	1.8	0.64	0.36	0.25	0.16
RS03	0.65	0.20	1.5	0.51	0.29	0.20	0.13
RS04	0.65	0.12	1.5	0.66	0.38	0.26	0.16
RS05	0.65	0.08	2.2	1.21	0.69	0.48	0.30
RS06	0.69	0.20	2.2	0.76	0.44	0.31	0.19
RS07	0.69	0.20	1.8	0.64	0.36	0.25	0.16
RS08	0.69	0.20	1.5	0.51	0.29	0.20	0.13
RS09	0.69	0.12	1.5	0.66	0.38	0.26	0.16
RS10	0.69	0.12	2.2	0.99	0.56	0.39	0.25
RS11	0.69	0.08	2.2	1.21	0.69	0.48	0.30
RS12	0.69	0.06	2.2	1.39	0.80	0.56	0.35
RS13	0.69	0.04	2.2	1.71	0.98	0.68	0.43

GHENT

First results – Wave impact forces

 \rightarrow M. Streicher, Wednesday 8:10 a.m.

Department of Civil Engineering – Faculty of Engineering & Architecture

Conclusions & Future work

- 1. HSR tests show a significant increase of long wave energy close to the dike
- 2. The foreshore slope value has a clear influence:
 - a. On the accuracy of the prediction formula for wave overtopping: it is sensitive to the foreshore slope value for high freeboard values
 - b. On the accuracy of the prediction formula for $T_{m-1,0,t}$: it makes an overestimation for steep slopes
- Important observation of variability of load cell force
 measurements over the width of the flume

GHFN

Thank you for your attention!

Vincent Gruwez, I. Vandebeek, D. Kisacik, M. Streicher, T. Verwaest, A. Kortenhaus, P. Troch

Funding: Flemish Agency for Innovation by Science and Technology (VLAIO)

www.crestproject.be

Department of Civil Engineering