

36TH INTERNATIONAL CONFERENCE ON COASTAL ENGINEERING 2018

Baltimore, Maryland | July 30 - August 3, 2018

The State of the Art and Science of Coastal Engineering

Beach Profile Evolution In Front Of Storm Seawalls: A Physical And Numerical Study

Davide Pasquali, PhD, PostDoc Researcher University of l'Aquila - Department of Civil, Construction-Architectural and Environmental Engineering (DICEAA) - Environmental and Maritime Hydraulic Laboratory (LIAM)

Authors:

Alessandra Saponieri¹, Marcello Di Risio², **Davide Pasquali**², Nico Valentini¹, Francesco Aristodemo³, Giuseppe Tripepi³, Daniele Celli¹, Maximilian Streicher⁴, Leonardo Damiani¹

Affiliations:

1) Polytechnic of Bari, 2) University of L'Aquila, 3) University of Calabria, 4) Genth University

PRESENTATION LAYOUT

- INTRODUCTION
- AIMS AND MOTIVATIONS
- PHYSICAL MODEL
- NUMERICAL MODEL
 - PHYSICAL MODEL DESIGN
 - XBEACH VALIDATION
- RESULTS AND DISCUSSION
- CONCLUSIONS AND FUTURE DEVELOPEMENTS

INTRODUCTION

"The HYDRALAB+ project brings together European researchers, industry and stakeholders to improve experimental research, related numeric modelling and field studies aimed at adapting to climate change."

This work is a task inside a wide European Project WALOWA (WAve LOads on Walls) aimed at investigating overtopping wave impacts on a vertical storm wall placed on the top of a dike in mildly sloping shallow foreshore conditions (Streicher et al. 2018). The Project was a cooperation of Ghent University (Belgium), TU Delft (The Netherlands), RWTH Aachen (Germany), University of Bari, University of L'Aquila, University of Calabria, University of Florence (Italy) and Flanders Hydraulics Research (Belgium).

Besides the study of wave impact forces and pressures on the wall, tests also allow to observe the morphological evolution of cross-shore beach profile under normally incident, irregular wave attacks, characterized by different wave characteristics (i.e. height, period and energy).

In particular, bed scour at the dike toe and its evolution in terms of scour depth, width and distance from the structure toe are investigated as a function of wave height, wave period, wave steepness and flow depth at the toe.

Moreover, the **numerical study** performed to design the experiments and the preliminary numerical simulations aimed to correctly reproduce the observed evolution are illustrated.

The aim of this work is to **study** the **evolution of the scour** in front of a **vertical wall dike** using both physical and numerical models.

The aim of this work is to **study** the **evolution of the scour** in front of a **vertical wall dike** using both physical and numerical models.

The major part of empirical-based formulas on scour at coastal structures (pipelines, vertical breakwaters and rubble mound breakwaters with different slopes)

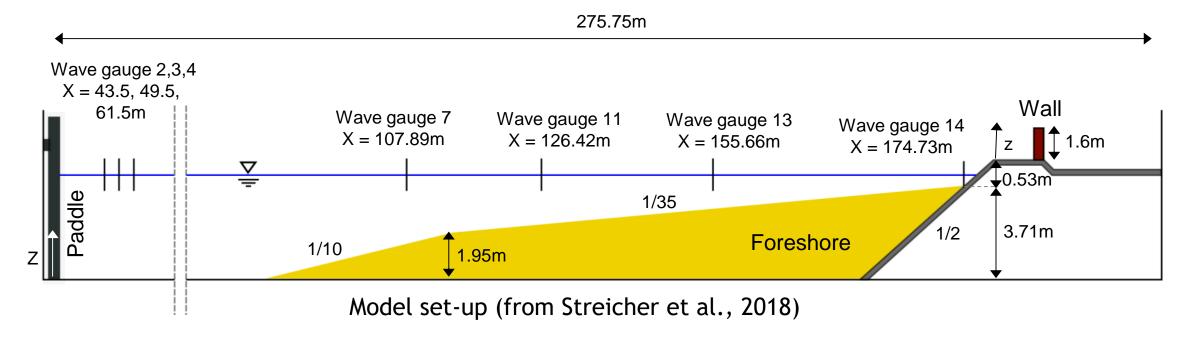
non-breaking regular waves and no-suspension mode of sand transport, i.e. "coarse sand"

non-breaking regular waves and no-suspension mode of sand transport, i.e. "coarse sand"

These conditions are very different to the present configuration

- inclined concrete wall representing the dike
- frequent occurrence of breaking waves
- suspension mode of sediments
- presence of very shallow and extremely very shallow foreshore.

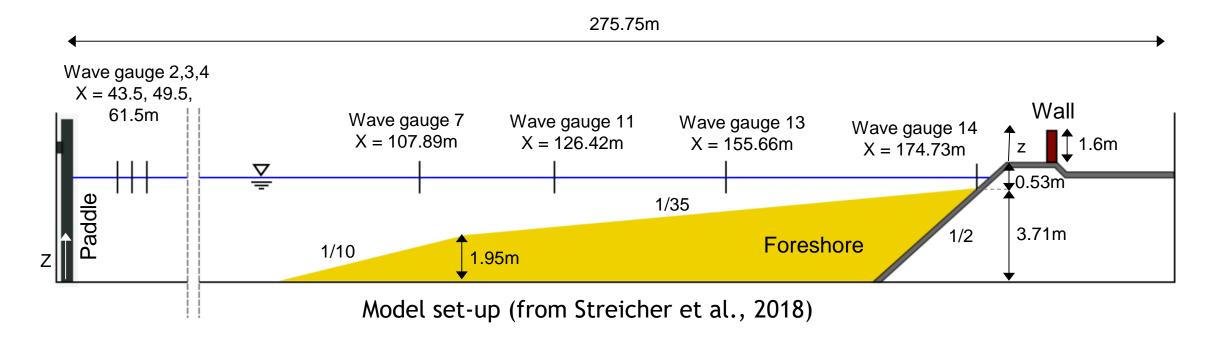
WALOWA tests represent a relevant novelty in the field of morphodynamic effects near coastal structures for shallow foreshore.



The physical model reproduces the prototype conditions at Froude scale 1:4.3

The experimental tests were performed at Delta Flume (Deltares, Delft) in March 2017

- Initial sandy foreshore begins about 94 m from the wave paddle with a mean slope of 1/10
- 1/35 sloped foreshore for 61.6 m,
- ½ sloped concrete dike with a promenade about 2 m wide.
- At the end of the promenade a vertical steel wall is realized, 1.6 m high.



The foreshore is constituted by a **top layer** (\approx 0.4m deep) of a medium sand (according to Wentworth grain size classes) with a D_{50} equal to 0.32 mm and a second layer, below the first one until the flume bottom, made of fine sand with a D_{50} of 0.23 mm. The total foreshore volume is comprised of ~1000m³ of sand

A series of sea states were reproduced and bottom evolution measured.

Cross-shore beach profiles were measured before and after each test, by means of a mechanical profiler along four cross-shore sections.

After each test, the foreshore was not restored to its initial configuration

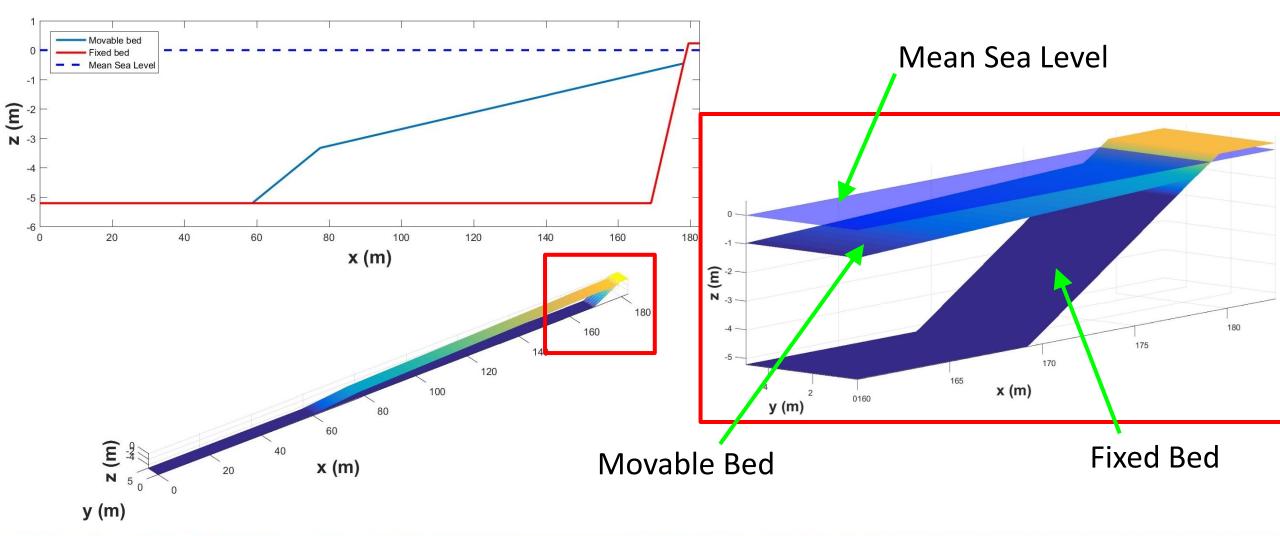
The weel has a Diameter equal to 0.10m

PHYSICAL MODEL DESIGN

In order to design the experiment, i.e. estimate the expected amount and location of erosion/accretion a series of preliminary numerical XBeach simulations was performed in order to gain insight about the evolution of the foreshore.

It as to be stressed that these numerical simulations are preliminary as the results (at this step) are not validated against observations.

The validation of the numerical model has been done at the end of the tests and will be presented in next slides.



PHYSICAL MODEL DESIGN: COMPUTATIONAL DOMAIN

PHYSICAL MODEL DESIGN

A preliminary sensitivity analysis was performed by varying incident waves type (regular and wave groups) and boundary conditions (back and front).

All simulations were performed in 2D.

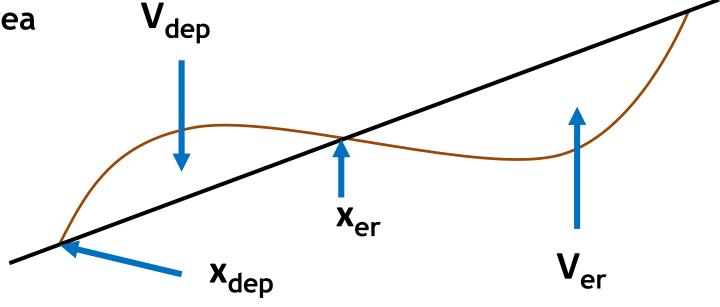
The final bottom configurations have been compared and used to evaluate the expected amount and location of erosion/accretion

PHYSICAL MODEL DESIGN

- Both stationary wave boundary conditions (STAT) and wave groups based on Jonswap spectra (VAR) have been simulated
- Adsorbing (ADS2d) and wall boundary conditions were imposed at the offshore and inshore boundaries respectively
- The duration of each simulation was selected to be equal to the experimental one.

PHYSICAL MODEL DESIGN: TESTS PROGRAM

Simulation		H _{s-paddle} (m)	T _p (s)	h _{paddle} (m)	Exp. Duration (min)	Sea State	Sim. Duration (min)	B.C. (front and back)
	_STAT_ADS		6.61	5.21	110	Stationary	110	Absorbing (2D)
MB_1	_STAT_WALL	1.21						wall
	_VAR_ADS	1.21				Jons. (Wave Groups)	125 (110+15)	Absorbing (2D)
	_STAT_ADS	1.45	7.24	5.31	121	Stationary	121	Absorbing (2D)
MB_2	_STAT_WALL							wall
	_VAR_ADS					Jons. (Wave Groups)	136 (121+15)	Absorbing (2D)
MB_3	_STAT_ADS		6.61 5.21	5.21	331	Stationary	331	Absorbing (2D)
	_STAT_WALL							wall
	_VAR_ADS					Jons. (Wave Groups)	346 (331+15)	Absorbing (2D)

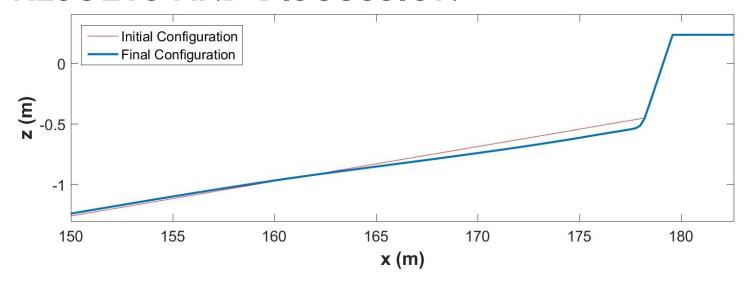

V_{dep} = Deposition Volume

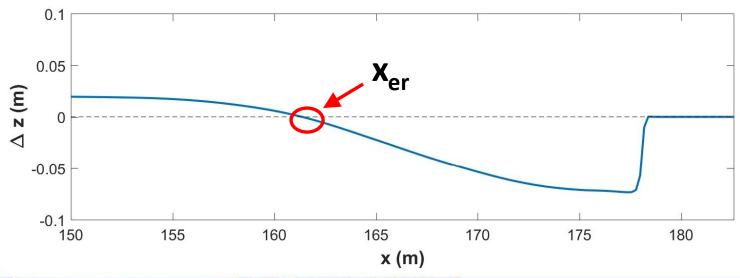
Initial configurationFinal configuration

 x_{dep} = End of the deposition area

 x_{er} = End of the erosion area

V_{er} = Eroded Volume

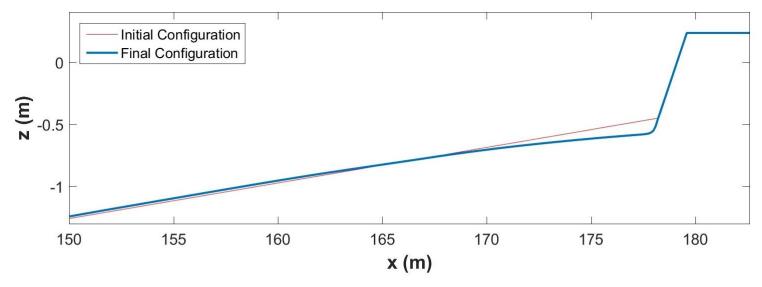


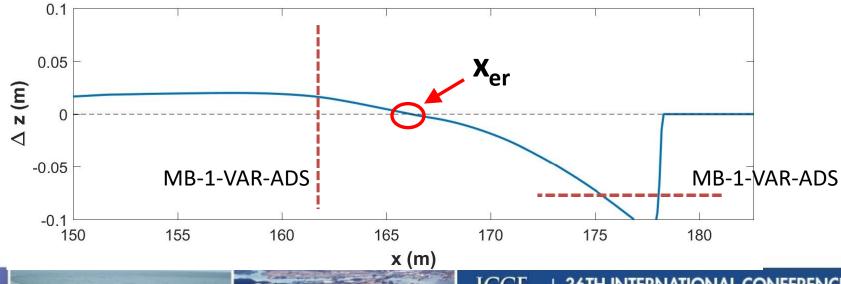


SIMULATION MB-1-VAR-ADS (Stationary WB conditions)

Hs = 1.21 mTp = 6.61 s

PHYSICAL MODEL DESIGN

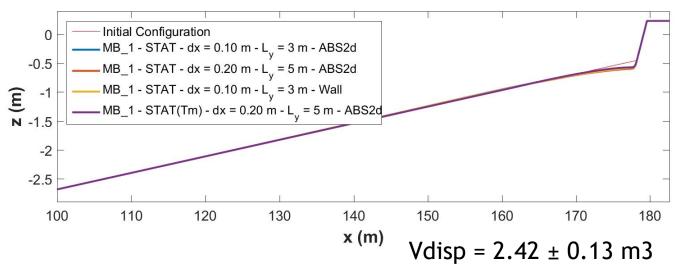


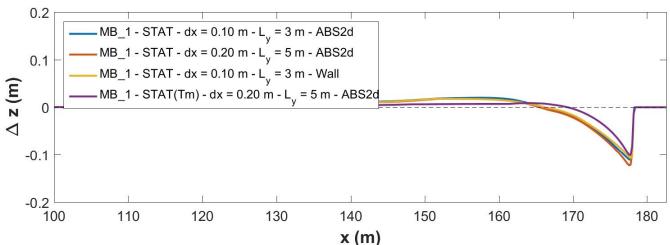


SIMULATION MB-1-STAT-ADS (Wave groups)

Hs = 1.21 mTp = 6.61 s

PHYSICAL MODEL DESIGN





- Boundary conditions do not influence significantly the results
- Ly (transversal dimension) slight influences the results

ВС	L _y (m)	dx (m)	x _{dep} (m)	x _{er} (m)	V _{dep} (m³)
ABS_2D	3	0.10	140.4	166.2	2.53
	5	0.20	141.4	165.6	2.30
WALL	3	0.10	140.6	166.2	2.43

-0.5

-2.5

100

E -1 N -1.5

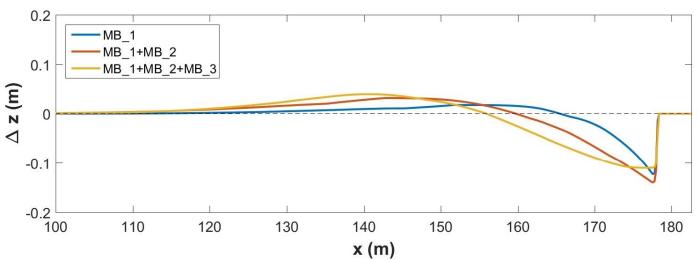
A further series of was performed to estimate the erosion/accretion pattern at the end of MB tests (without reprofiling at the end of each test).

x (m) 0.2 MB 1

120

130

110


Initial Configuration

MB 1+MB 2+MB 3

MB 1

MB 1+MB 2

STATIONARY CONDITIONS

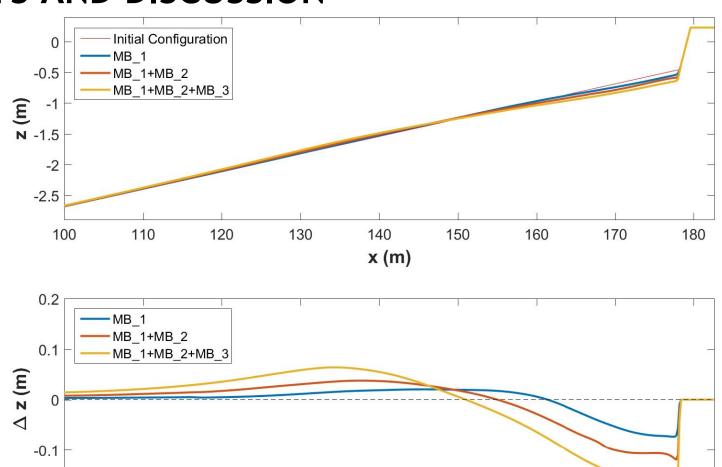
140

150

160

170

180



A further series of simulations was performed to estimate the erosion/accretion pattern at the end of MB tests (without reprofiling at the end of each test).

WAVE GROUPS

-0.2 \ 100

110

120

130

140

x (m)

150

170

180

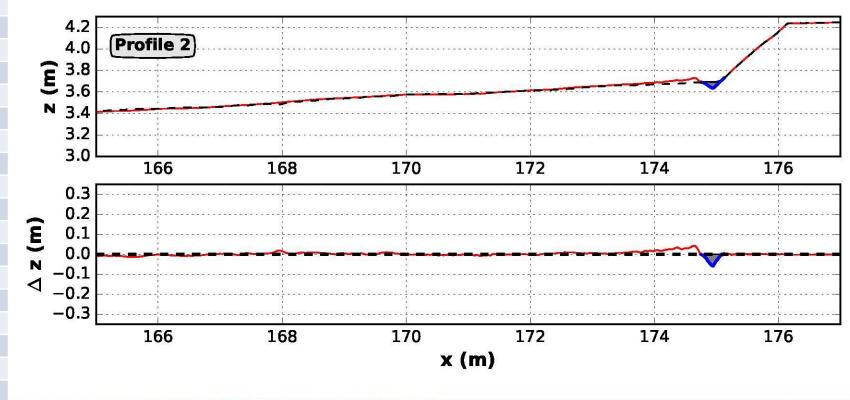
160

The total displaced volume is $13 \div 23 \text{ m}^3$ (depending on wave groupiness) with erosion expected within about 30 m offshore the seawall (x \approx 177 m) and accretion within further 40 m (accretion greater than 2 cm)

Considering these results was possible to accept the possibility to do not reprofile at the end of each test because of the small morphodynamic changes.

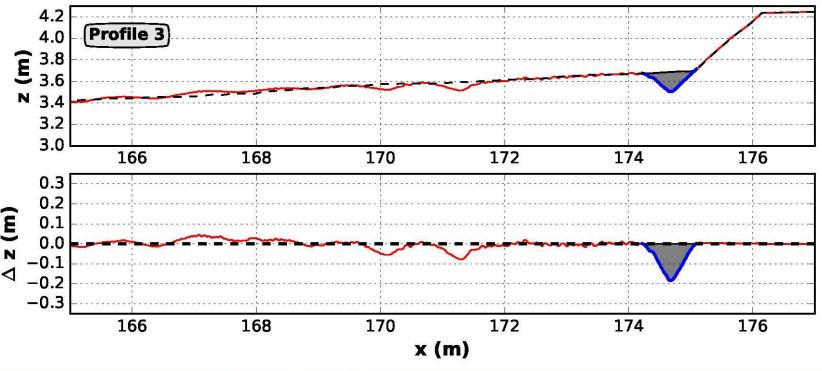
PHYSICAL MODEL: TESTS PROGRAM

testID	Waves	h _{paddle}	h _{toe}	A_{c}	$H_{m0,off}$	$H_{m0,toe}$	$T_{m-1,0,off}$	$T_{m-1,0,toe}$	$h_{toe}/H_{m0,off}$
-	-	m	m	m	m	m	S	S	-
Bi_1_4	~18	3.99	0.28	0.25	1.11	0.36	6.76	19.89	0.25
Bi_1_5	~18	4.00	0.29	0.24	1.29	0.42	6.99	21.55	0.22
Bi_1_6	~18	4.01	0.30	0.23	1.23	0.40	7.40	21.44	0.24
Bi_2_4	~18	4.13	0.42	0.11	1.17	0.44	6.10	19.36	0.36
Irr_1_F	~1000	3.99	0.28	0.25	1.05	0.30	5.80	12.30	0.27
Irr_2_F	~3000	4.00	0.29	0.24	0.92	0.29	5.36	10.39	0.32
Irr_2_S	~3000	3.99	0.28	0.25	0.92	0.29	5.38	9.35	0.30
Irr_3_F	~3000	4.12	0.41	0.12	0.92	0.36	5.36	7.98	0.45
Bi_2_5	~18	4.14	0.43	0.10	1.27	0.49	6.16	17.31	0.34
Bi_2_6	~18	4.14	0.43	0.10	1.30	0.51	6.24	17.14	0.33
Bi_2_6_R	~18	4.14	0.43	0.10	1.31	0.50	6.19	17.26	0.33
Irr_8_F	~1000	4.13	0.42	0.11	0.49	0.35	3.83	4.85	0.86
Irr_4_F	~1000	3.79	0.08	0.45	0.87	0.22	5.41	12.05	0.09
Irr_5_F	~1000	3.78	0.07	0.46	1.05	0.26	5.82	13.55	0.07
Irr_1_F_R	~1000	4.01	0.30	0.23	1.06	0.35	5.80	10.43	0.28
Irr_7_F	~1000	4.00	0.29	0.24	0.65	0.29	4.65	7.00	0.45
Irr_2_F_R	~3000	4.01	0.30	0.23	0.92	0.32	5.36	8.55	0.33
Bi_1_6_R	~18	4.01	0.30	0.23	1.34	0.48	6.07	17.50	0.22
Bi_3_6	~18	3.77	0.06	0.47	1.05	0.31	6.52	22.79	0.05
Bi_3_6_1	~18	3.77	0.06	0.47	1.16	0.34	6.64	21.71	0.05
Bi_3_6_2	~18	3.76	0.05	0.48	1.28	0.35	6.36	19.59	0.04
Irr_6_F	~1000	3.77	0.06	0.47	0.65	0.19	4.68	10.05	0.09

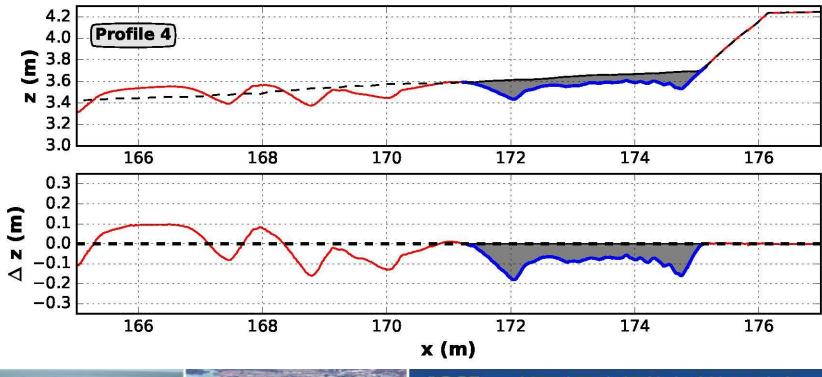


testID	Waves	h_{paddle}	h_{toe}
-	-	m	m
Bi_1_4	~18	3.99	0.28
Bi_1_5	~18	4.00	0.29
Bi_1_6	~18	4.01	0.30
Bi_2_4	~18	4.13	0.42
Irr_1_F	~1000	3.99	0.28
Irr_2_F	~3000	4.00	0.29
Irr_2_S	~3000	3.99	0.28
Irr_3_F	~3000	4.12	0.41
Bi_2_5	~18	4.14	0.43
Bi_2_6	~18	4.14	0.43
Bi_2_6_R	~18	4.14	0.43
Irr_8_F	~1000	4.13	0.42
Irr_4_F	~1000	3.79	0.08
lrr_5_F	~1000	3.78	0.07
Irr_1_F_R	~1000	4.01	0.30
Irr_7_F	~1000	4.00	0.29
Irr_2_F_R	~3000	4.01	0.30
Bi_1_6_R	~18	4.01	0.30
Bi_3_6	~18	3.77	0.06
Bi_3_6_1	~18	3.77	0.06
Bi_3_6_2	~18	3.76	0.05
Irr_6_F	~1000	3.77	0.06
A COLUMN TO A COLU	The state of the s		

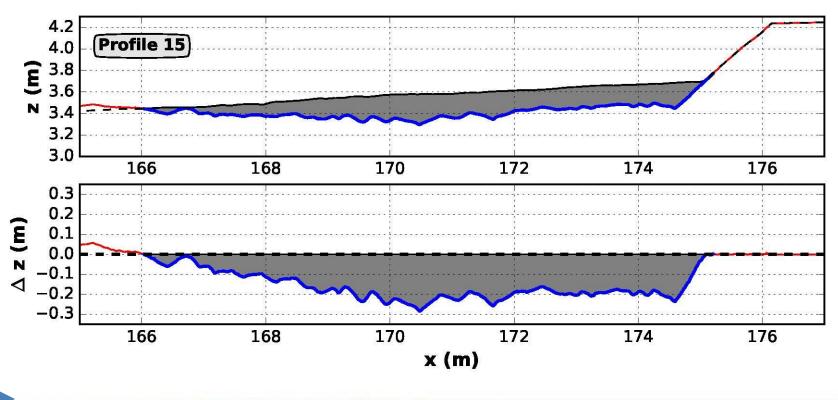
The displayed profile was measured at the center line in the Delta Flume



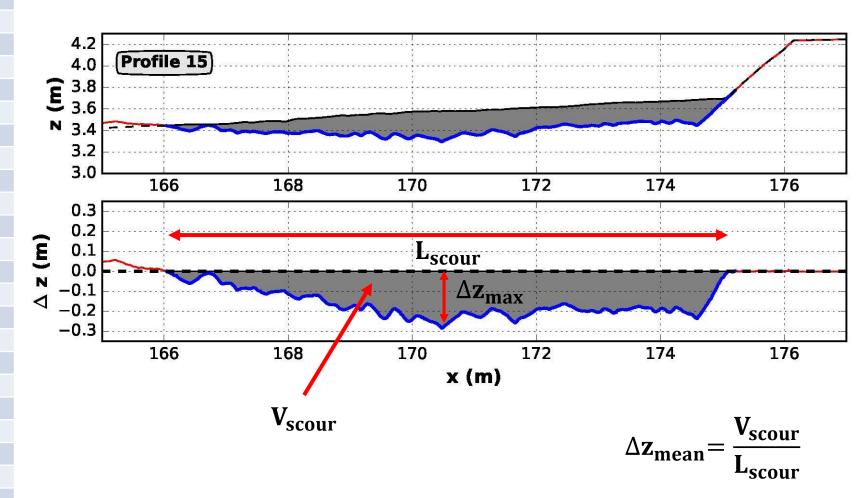
testID	Waves	h _{paddle}	h_{toe}
-		m	m
Bi_1_4	~18	3.99	0.28
Bi_1_5	~18	4.00	0.29
Bi_1_6	~18	4.01	0.30
Bi_2_4	~18	4.13	0.42
Irr_1_F	~1000	3.99	0.28
Irr_2_F	~3000	4.00	0.29
Irr_2_S	~3000	3.99	0.28
Irr_3_F	~3000	4.12	0.41
Bi_2_5	~18	4.14	0.43
Bi_2_6	~18	4.14	0.43
Bi_2_6_R	~18	4.14	0.43
Irr_8_F	~1000	4.13	0.42
Irr_4_F	~1000	3.79	0.08
lrr_5_F	~1000	3.78	0.07
Irr_1_F_R	~1000	4.01	0.30
Irr_7_F	~1000	4.00	0.29
Irr_2_F_R	~3000	4.01	0.30
Bi_1_6_R	~18	4.01	0.30
Bi_3_6	~18	3.77	0.06
Bi_3_6_1	~18	3.77	0.06
Bi_3_6_2	~18	3.76	0.05
Irr_6_F	~1000	3.77	0.06
Verment			



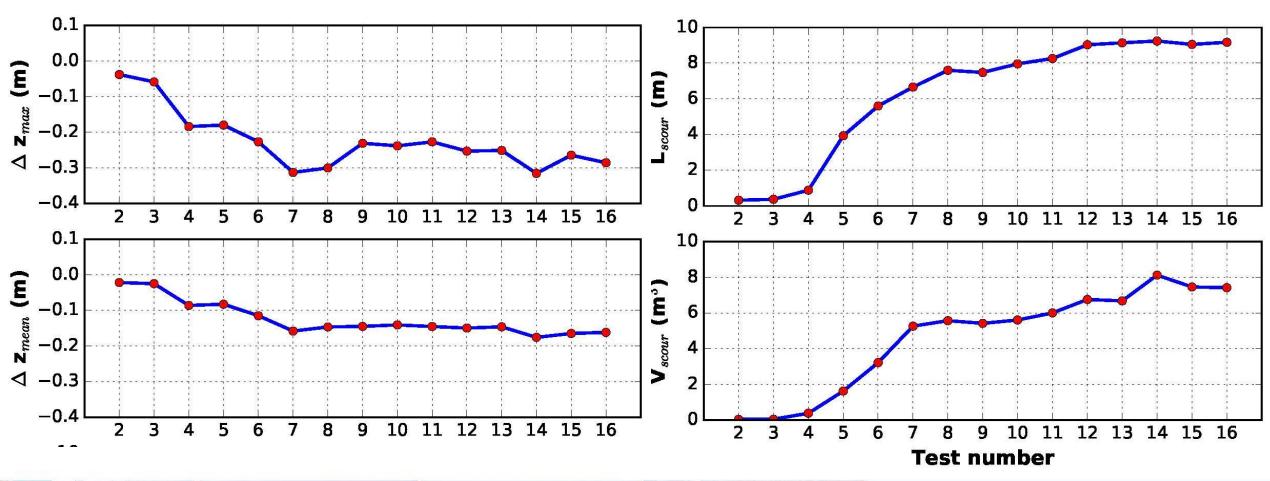
testID	Waves	h _{paddle}	h_{toe}
-	-	m	m
Bi_1_4	~18	3.99	0.28
Bi_1_5	~18	4.00	0.29
Bi_1_6	~18	4.01	0.30
Bi_2_4	~18	4.13	0.42
lrr_1_F	~1000	3.99	0.28
Irr_2_F	~3000	4.00	0.29
Irr_2_S	~3000	3.99	0.28
Irr_3_F	~3000	4.12	0.41
Bi_2_5	~18	4.14	0.43
Bi_2_6	~18	4.14	0.43
Bi_2_6_R	~18	4.14	0.43
Irr_8_F	~1000	4.13	0.42
Irr_4_F	~1000	3.79	0.08
lrr_5_F	~1000	3.78	0.07
Irr_1_F_R	~1000	4.01	0.30
Irr_7_F	~1000	4.00	0.29
Irr_2_F_R	~3000	4.01	0.30
Bi_1_6_R	~18	4.01	0.30
Bi_3_6	~18	3.77	0.06
Bi_3_6_1	~18	3.77	0.06
Bi_3_6_2	~18	3.76	0.05
Irr_6_F	~1000	3.77	0.06
ALC: NO.	1 1		



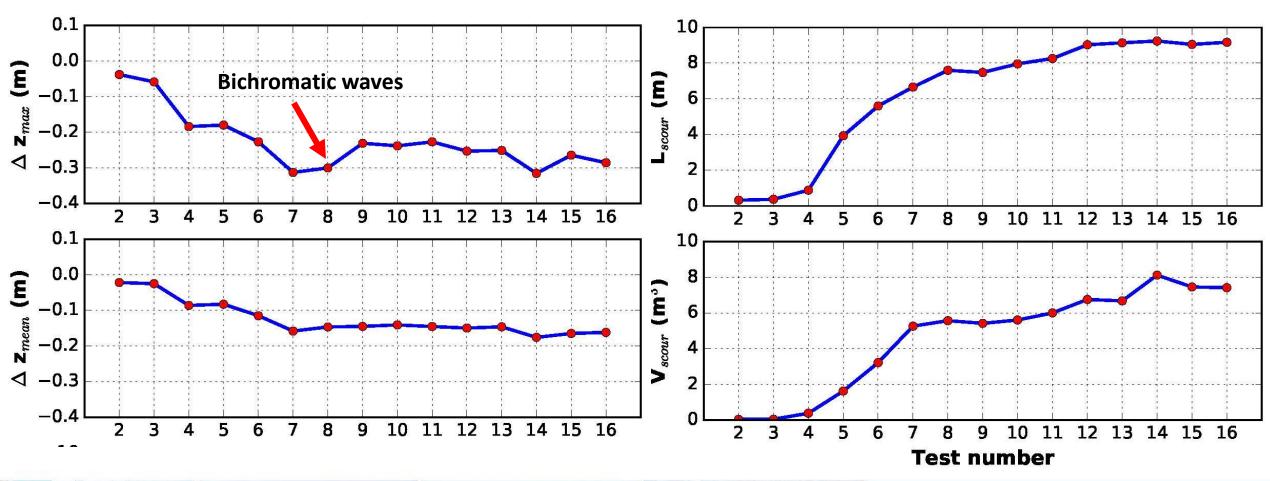
testID	Waves	h _{paddle}	h _{toe}
-	-	m	m
Bi_1_4	~18	3.99	0.28
Bi_1_5	~18	4.00	0.29
Bi_1_6	~18	4.01	0.30
Bi_2_4	~18	4.13	0.42
Irr_1_F	~1000	3.99	0.28
Irr_2_F	~3000	4.00	0.29
Irr_2_S	~3000	3.99	0.28
Irr_3_F	~3000	4.12	0.41
Bi_2_5	~18	4.14	0.43
Bi_2_6	~18	4.14	0.43
Bi_2_6_R	~18	4.14	0.43
Irr_8_F	~1000	4.13	0.42
Irr_4_F	~1000	3.79	0.08
lrr_5_F	~1000	3.78	0.07
Irr_1_F_R	~1000	4.01	0.30
Irr_7_F	~1000	4.00	0.29
Irr_2_F_R	~3000	4.01	0.30
Bi_1_6_R	~18	4.01	0.30
Bi_3_6	~18	3.77	0.06
Bi_3_6_1	~18	3.77	0.06
Bi_3_6_2	~18	3.76	0.05
Irr_6_F	~1000	3.77	0.06
Worker .	1 1		



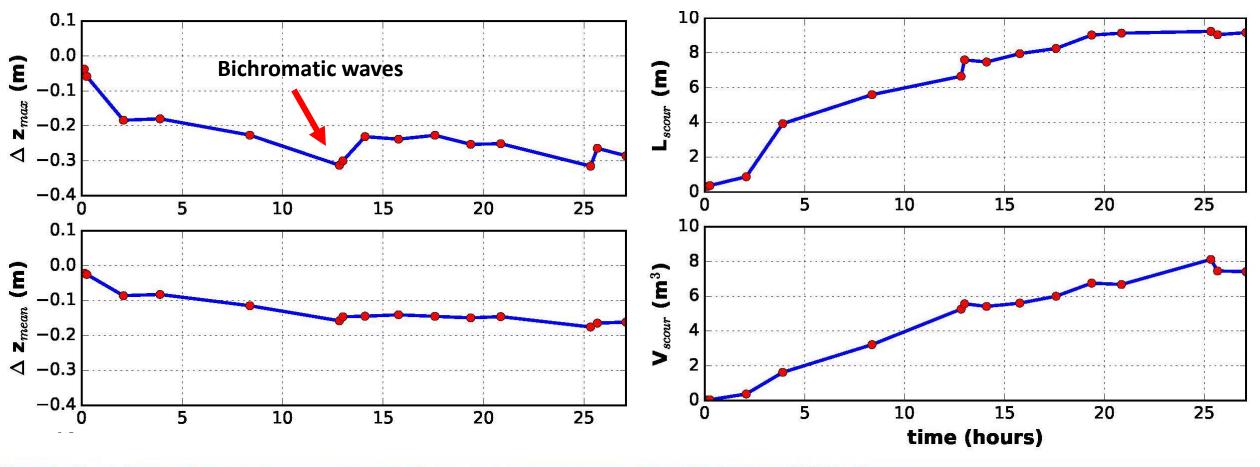
testID	Waves	h	h.
CCSCID	Waves	h _{paddle}	h _{toe}
 Bi_1_4	- ~18	m 3.99	m 0.28
Bi_1_5	~18	4.00	0.29
Bi_1_6	~18	4.01	0.30
Bi_2_4	~18	4.13	0.42
Irr_1_F	~1000	3.99	0.28
Irr_2_F	~3000	4.00	0.29
Irr_2_S	~3000	3.99	0.28
Irr_3_F	~3000	4.12	0.41
Bi_2_5	~18	4.14	0.43
Bi_2_6	~18	4.14	0.43
Bi_2_6_R	~18	4.14	0.43
Irr_8_F	~1000	4.13	0.42
Irr_4_F	~1000	3.79	0.08
Irr_5_F	~1000	3.78	0.07
Irr_1_F_R	~1000	4.01	0.30
Irr_7_F	~1000	4.00	0.29
Irr_2_F_R	~3000	4.01	0.30
Bi_1_6_R	~18	4.01	0.30
Bi_3_6	~18	3.77	0.06
Bi_3_6_1	~18	3.77	0.06
Bi_3_6_2	~18	3.76	0.05
Irr_6_F	~1000	3.77	0.06
A 1000			



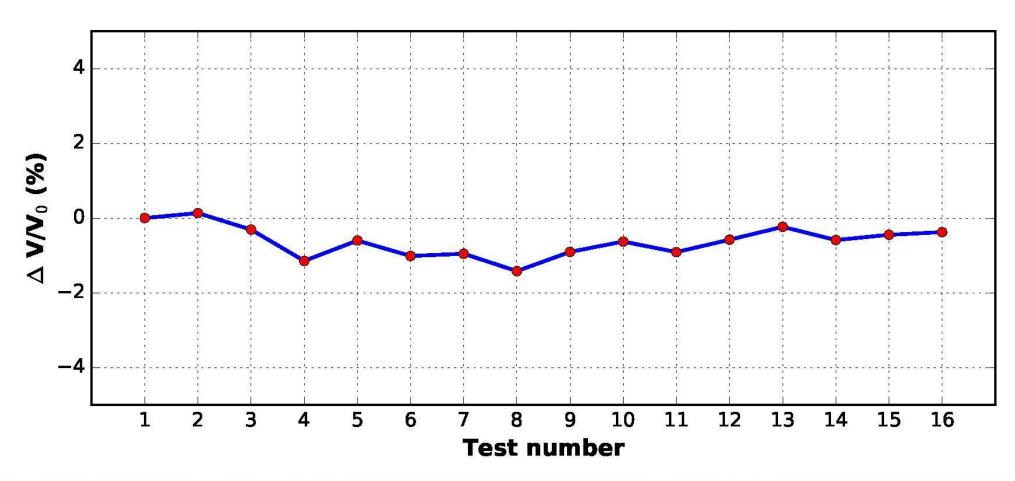
Scour evolutions related to test number



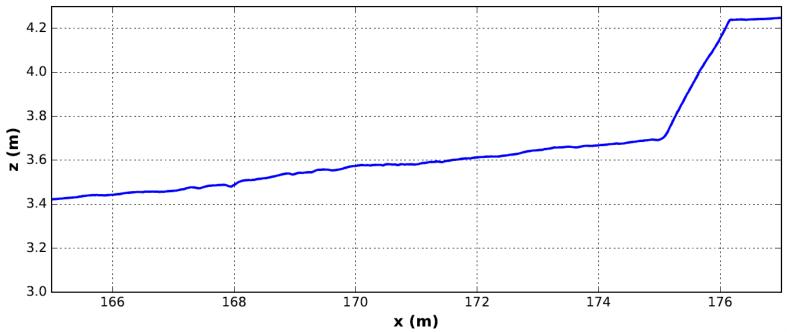
Scour evolutions related to test number



Scour time evolution



Variations percentage



A series of XBeach numerical simulations was performed to reproduce the observed evolution.

The initial configuration of the first simulation was set equal to the observed one.

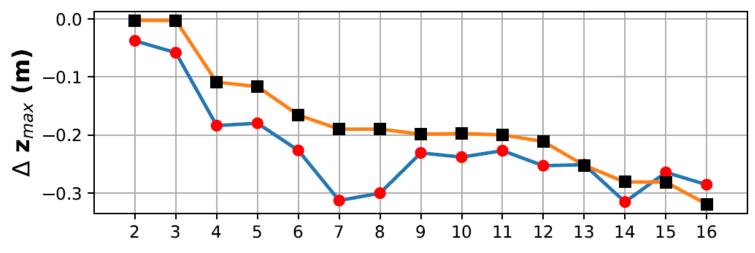
Scour evolutions related to test number

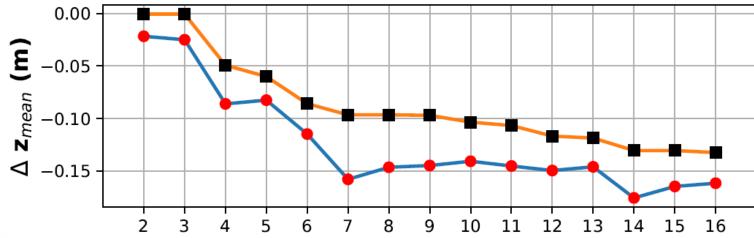
A series of XBeach numerical simulations was performed to reproduce the observed evolution.

The initial configuration of the first simulation was set equal to the observed one.

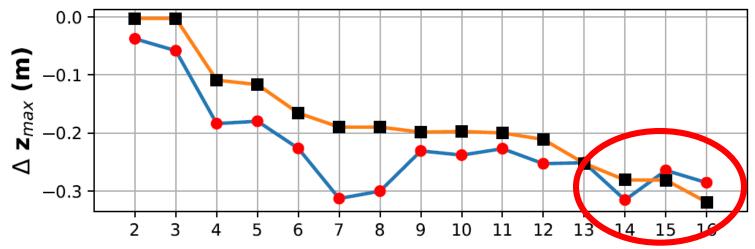
The initial configuration of the succeeding simulations was set equal to the final configuration (computed) of the preceding simulations.

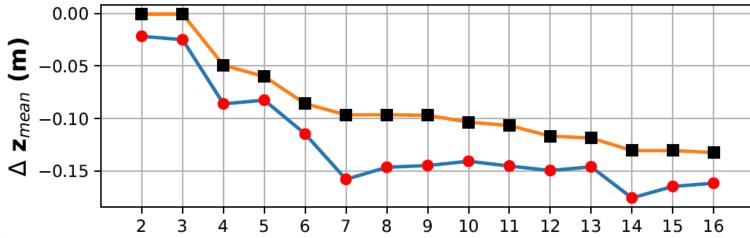
The computed cross shore profiles were then analyzed and compared to the observed ones.





Scour evolutions related to test number





Scour evolutions related to test number

CONCLUSIONS

In the paper, foreshore morphological evolution based on a physical model and numerical simulations is reported and discussed.

Bed scour at the dike toe and its evolution in terms of scour depth, width and distance from the structure toe are investigated.

The numerical study was performed to design the experiments and to reproduce the observed evolution

The importance of the numerical simulations for physical model design is underlined.

The work is still in progress with the aim to provide insight (and design criteria) about morphodynamic evolution in front of sea walls with shallow foreshore.

an Open Access Journal by MDPI

Marine Sediments: Processes, Transport and Environmental Aspects

Thank you for your attention

any questions/comments?

an Open Access Journal by MDPI

Marine Sediments: Processes, Transport and Environmental Aspects

Guest Editors:

Prof. Dr. Marcello Di Risio

University of I 'Aquila; Department of Civil, Construction-Architectural, and Environmental Engineering Department (DICEAA); Environmental and Maritime Hydraulic Laboratory (LIAM), P.le Ponfieri, 1 67100 Monteluco di Roio, L'Acuila, Italy

marcello, dirisio@univaq.it

Prof. Dr. Donald F. Hayes

Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, NV, USA

donalc.hayes@unlv.edu

Dr. Davide Pasquali

University of L'Aquila; Department of Civil, Construction-Architectural, and Environmental Engineering Department (DICEAA); Environmental and Maritime Hydraulic Laboratory (LIAM), P.le Pontieri, 167100 Monteluco di Roio, L'Acuila, Italy

davide.pasquali@univac.it

mdpi.com/si/15868

Message from the Guest Editors

In recent years, increasing attention has been paid to water quality and environmental aspects related to sediment transport driven by both ambient forcing and human activities. Indeed, estuarine, coastal, and harbor areas often undergo operations to nourish beaches, to maintain navigation channels, to remove contaminated sediment, and so forth. Hence, much research is needed related to the sediment processes, transport, and related environmental aspects of marine sediments. The aim of this Special Issue is to collect novel research results in this field

Authors are invited to submit papers dealing with topics including but not limited to the following:

- marine sediment processes, transport, and environmental aspects related to dredging operations
- coastal sediments transport
- harbor siltation
- sustainable costal defence systems
- contaminated sediment management

Research based on field observation, numerical and experimental modelling, and theoretical models is expected to be part of the Special Issue. Also, methodological approaches, comprehensive reviews, and best practices on national and international scales are welcome.

Baltimore, Maryland | July 30 - August 3, 2018