

36TH INTERNATIONAL CONFERENCE ON COASTAL ENGINEERING 2018

Baltimore, Maryland | July 30 - August 3, 2018

The State of the Art and Science of Coastal Engineering

INFLUENCE OF BEACH LENGTH ON THE DEVELOPMENT OF ESTUARINE DELTAS

DUY Dinh Van, Ph.D.

Thuyloi University, Vietnam

1

Background

Background

Boundary

Fig. Schematic diagram of INFINITE delta shorelines

A new analytical solution to study the evolution of FINITE delta shorelines would be useful.

In reality:

Fig. An example of FINITE delta shorelines in Tenryu River delta, Japan

2

New Analytical solution

Governing equation: $\frac{\partial y}{\partial t} = \varepsilon \frac{\partial^2 y}{\partial x^2}$ (1)

Without rigid boundary (Larson et al., 1987):

$$y = \frac{q_0}{D} \sqrt{\frac{t}{\pi \varepsilon}} e^{-x^2/(4\varepsilon t)} - \frac{q_0}{D} \frac{|x|}{2\varepsilon} erfc \left(\frac{|x|}{2\sqrt{\varepsilon t}}\right)$$
(2)

for: -∞<**x**<+∞

◆ With rigid boundaries (present study):

$$y = \frac{q_0}{2\varepsilon DL} \left[\frac{x^2}{2} - Lx + \frac{L^2}{3} + \varepsilon t - \frac{2L^2}{\pi^2} \sum_{n=1}^{\infty} \frac{1}{n^2} e^{-n^2 \pi^2 \frac{\varepsilon t}{L^2}} \cos \left(\frac{n \pi x}{L} \right) \right]$$

(3) for: -L<x<+L

3

Results

Results - Theoretical discussion

Dimensionless form:

Let:
$$y^* = y \frac{2\varepsilon D}{q_0 L}$$
; $x^* = \frac{x}{L}$; $t^* = \frac{\varepsilon t}{L^2}$;

Without rigid boundary (Larson et al., 1987):

$$y^* = 2\sqrt{\frac{t^*}{\pi}}e^{-(x^{*2}/4t^*)} - |x^*|erfc(\frac{|x^*|}{2\sqrt{t^*}})$$
 (4)

With rigid boundaries:

$$y^* = \frac{x^{*2}}{2} - |x^*| + \frac{1}{3} + t^* - \frac{2}{\pi^2} \sum_{n=1}^{\infty} \frac{e^{-n^2 \pi^2 t^*}}{n^2} \cos(n\pi x^*)$$
 (5)

- At small t*: no effect of boundary to shoreline change at the delta tip: Eq. (4).
- At large t*: fifth term in Eq. (5) cancels, shoreline with parabolic shape advances at constant speed.

Results - theoretical discussion

Shoreline evolution at $x^*=0 (y_0^*)$:

$$y_0^* = t^* + \frac{1}{3} - \frac{2}{\pi^2} \sum_{n=1}^{\infty} \frac{e^{-n^2 \pi^2 t^*}}{n^2}$$
(6)

At small t*:

$$y_0^* = 2\sqrt{\frac{t^*}{\pi}} \quad (7)$$

At large t*:

$$y_0^* = t^* + \frac{1}{3}$$
 (8)

Results - Theoretical discussion

(9)

Shoreline evolution at $x^*=1$ (y_1^*) :

$$y_1^* = t^* - \frac{1}{6} - \frac{2}{\pi^2} \sum_{n=1}^{\infty} (-1)^n \frac{e^n}{n^2}$$

At small t*:

$$y_{1}^{*} = 2\sqrt{\frac{t^{*}}{\pi}}e^{-\left(\frac{1}{4t^{*}}\right)} - erfc\left(\frac{1}{2\sqrt{t^{*}}}\right)$$
(10)

At large t*:

$$y_1^* = t^* - \frac{1}{6}$$
 (11)

Experiment (Refaat, 1990)

- Experiment was performed in a wave basin 35x10m;
- Fixed bed with slope 1:10;
- Sediment discharge as a point source.
- Wave conditions: constant water depth of 30 cm; wave height of 2 cm and period of 0.8 sec; angle of breaking wave to initial shoreline a_0 =0 deg.;
- Sediment supply rate Q=7.06 cm³/sec;
- Run time: 80 min = 4,800 sec;
- Shoreline positions were measured at every 10 min and 50 cm interval.

Comparison with experiment (Refaat, 1990):

 Q_0 - sediment supply (cm³/sec)

 a_0 - wave crest angle to the straight initial shoreline (degree)

$$L = 800/2 = 400 \text{ cm}$$
; $\varepsilon = ?$

	4	
$y = \frac{q_0}{2\varepsilon DL} \left[\frac{x^2}{2} - Lx + \frac{1}{2} \right]$	$\frac{L}{3} + \varepsilon t - \frac{2L}{\pi^2} \sum_{n=1}^{\infty} \frac{1}{n^2} e$	$\frac{-n^2\pi^2\frac{\varepsilon t}{L^2}}{\cos\left(\frac{n\pi x}{L}\right)}$
		ave gaide waii v

Exp. No.	Q_0 (cm ³ /sec)	Run time (min)	a ₀ (deg.)
Series A A-1	7.06	80	0

E

800

Sediment

feeder

carriage

wave guide wall

Comparison with experiment (Refaat, 1990):

 Q_0 - sediment supply (cm³/sec)

 a_0 - wave crest angle to the straight initial shoreline (degree)

$$L = 800/2 = 400 \text{ cm}$$
; $\varepsilon = 15 \text{cm}^2/\text{s}$

-	(cm)				
25	1 1	3) $(\epsilon = 10 \text{ cm}^2/\text{s})$ 3) $(\epsilon = 15 \text{ cm}^2/\text{s})$			
20	- Eq. (3	3) $(\epsilon = 35 \text{ cm}^2/\text{s})$ riment (Refaat, 199	90)		0
15					
10					
5			<u> </u>	<u> </u>	
0	0 10	00 2000	3000	4000	5000
(t	(s)		5000
(cm	n³/sec)	Run time	(min)	a ₀ (de	g.)

Exp. No.

Series A

A-1

 Q_0

12 (cm)

Comparison with experiment (Refaat, 1990):

 Q_0 - sediment supply = 7.06 (cm³/sec); $a_0 = 0^0$

L = 800/2 = 400 cm; $\varepsilon = 15 \text{ cm}^2/\text{s}$

Conclusions

Conclusions

- A solution for studying the development of delta coastline with effect of the lateral boundaries has been obtained.

- The critical times when the lateral boundary has effect on the shoreline evolution are:
 - $t^* = 0.1$ at the boundary and
 - $t^* = 0.3$ at the river mouth;

- Comparison with experiment data shows the usefulness of present theory for simulating river delta coastlines with lateral boundary.

THANK YOU FOR YOUR KIND ATTENTION!

