

36TH INTERNATIONAL CONFERENCE ON COASTAL ENGINEERING 2018

Baltimore, Maryland | July 30 – August 3, 2018

The State of the Art and Science of Coastal Engineering

NUMERICAL MODELING OF TSUNAMI INUNDATION USING SUBGRID SCALE URBAN ROUGHNESS PARAMETERIZATION

Nobuki FUKUI Graduate School of Engineering, Kyoto University

ADI PRASETYO Research Center for Water Resources, Indonesia

Nobuhito MORI Disaster Prevention Research Institute, Kyoto University

OUTLINE

- Introduction
- Numerical Method
- Validation of Urban Roughness
 Parameterization with Experiment
- Model Comparison
- Conclusions

INTRODUCTION

Research Background

• Mega Tsunami hazard risk

•Urban city inundation of 2011 Tohoku Earthquake Tsunami →
•High occurrence probability of Nankai Trough Earthquake

the first time a large tsunami inundated an urban city in modern times

Practical hazard map

Roughness modeling (Manning's coefficient) according to the land usage pattern is used instead of structures

- Understanding tsunami inundation over coastal urban areas is necessary to make reasonable hazard maps,
- Current method for understanding tsunami inundation is insufficient
- The 2011 Tohoku tsunami showed complicated tsunami runup behavior (diffraction, vortex generation, turbulence around structures)
- Numerical model of tsunami inundaton
 An estimation method of tsunami hazard

Research Background

High resolution data for bathymetry and topography are necessary for detailed tsunami inundation modeling

Numerical model using structure resolving Topography (less than O(10m)) is available

O Pros	Direct consideration of the effect of structure			
	High computational accuracy			
× Cons	Difficulty in modeling			
	Heavy computational cost			
Example of hig tsunami m Kaiser et a Prasetyo (2	h-resolution hodeling I. (2011) 017) Etc.			

Improvement of medium resolution model in accuracy is important

Objective

Develops and validates a numerical model of tsunami inundation using upscaled urban roughness parameterization and a Drag Force Model (DFM) to simulate the effect of structures as a drag force acting on flow

Upscaling high-resolution topography data

<u>Medium resolution model</u> considering subgrid scale topography Δx *is the upscaled mesh size, meaning the spatial* resolution for the roughness parameters

NUMERICAL METHOD

Outline of Numerical model

Tsunami model: TUNAMI-N2 (Goto et al.,1997) 2D-Nonlinear Shallow Water Equations Continuity (mass conservation)

which has been used to simulate tsunami propagation from offshore to inland areas in Japan and other countries

$$\frac{\partial \eta}{\partial t} + \frac{\partial M}{\partial x} + \frac{\partial N}{\partial y} = 0$$

 η : water level h: still water depth D: total water depth M,N: flow discharge flux n: Manning's coefficient τ_b : bottom friction force

• Momentum conservation τ_b : bottom fric

$$\frac{\partial M}{\partial t}_{\frac{\partial N}{\partial t}} \frac{gn^2 M\sqrt{M^2 + N^2}}{D^{\frac{7}{3}}} \qquad \begin{array}{c} \partial n & \tau_{bx} \\ \sigma & \sigma \\ \sigma & \rho \\ gD \frac{\partial \eta}{\partial y} - \frac{\tau_{by}}{\rho} \end{array}$$

ICCE

2018

Urban roughness parameterization

Three different bottom boundary conditions are considered for NSWE

- A) Drag Force Model (DFM)
- B) Composite Equivalent Roughness Model(CERM)
- C) Structure Resolving Model(SRM)
- D) Uniform Roughness Model(URM)

Urban roughness parameterization A

(A) DFM(Target of this study)

Effect of structures are considered as drag forces

Case division

- (a) Partial inundation $(D < \tilde{h}) d = D$
- (b) Full inundation $(D \ge \tilde{h}) d = \tilde{h}$

 A_x and A_y : projected area of structure, d: water depth of the area which drag force acts on, \tilde{h} : characteristic height of structure

Urban roughness parameterization B

(B) CERM (Aburaya and Imamura, 2002)
 Divide the force acting on the water into bottom friction and resistance forces ⇒composite equivalent roughness

$$R_1 = \rho g D \frac{n^2 u^2}{D^{\frac{4}{3}}} dx dy \left(1 - \frac{\theta}{100}\right)$$
$$R_2 = \frac{1}{2} C_D \rho u^2 (kD) \frac{\theta}{100} \frac{dx dy}{k^2}$$

$$n_{eq} = \sqrt{n^2 + \frac{C_D}{2gk} \frac{\theta}{100 - \theta} D^{\frac{4}{3}}}$$

 R_1 and R_2 corresponds to τ_b in NSWE

ho: fluid density, g: gravitational acceleration, θ : occupancy ratio of structures, k: width of structure, C_D : drag coefficient, n: Manning's coefficient for bottom friction

Urban roughness parameterization C and D

(C) Structure Resolving Model (SRM) The numerical simulation using the original topography with a fine grid ($\Delta x=1$ cm);

(D) Uniform Roughness Model(URM) The numerical simulation using this structure-free to-topography with a constant Manning roughness coefficient;

VALIDATION OF URBAN ROUGHNESS PARAMETERIZATION WITH EXPERIMENT

Experiment using 1/250 physical model

13 wave gauges were installed along the streets

Figure : Wave gauge locations

Prasetyo, 2017 (Kyoto U. Ph.D. thesis) CCE

Incident waves (water level at WG3)

Topography for simulation

JCCE 2018

for (C) SRM

Topography for simulation

Bottom roughness condition

MODEL	URBAN AREA	OTHERS	TOPOGRAPHY	STRUCTURE
(A)DFM	0.025	0.025	BE	Drag force
(B)CERM	n _{eq}	0.025	BE	Manning
(C)SRM	0.025	0.025	SR	Topography
(D)URM	0.025	0.025	BE	None

JCCE 2018

Drag force coefficient

 $C_D = a \exp(\lambda b R e) + 0.25$

Based on experiment by Wieselsberger, 1921

Re

Sensitive analysis of C_D for DFM

Maximum inundated depth (at each WG)

MODEL COMPARISON

Time series of inundated area

Inundation speed: bore case: exp>URM>DFM>CERM>SRM soliton case: URM>exp>SRM>DFM>CERM

Yellow colored area: experiment

Model comparison (arrival time)

ICCE

2018

Model comparison (max. depth)

JCCE 2018

Mesh size dependency (max. depth)

1CCE 2018

Main conclusions

- Validation of urban roughness parameterization +for DFM sensitivity analysis of C_D
 - DFM can express <u>flow directionality and submergence of</u> <u>structures</u> to some extent.
 - Accuracy of <u>maximum inundation depth</u> and <u>arrival time</u> by DFM is improved more than other models.
 - Mesh size dependency still remains.
- Further challenges
 - Determination of $\underline{C_D}$
 - Artificial empirical relationship of C_D and Re considers the energy dissipation.
 - The target of Re needs to be determined for prototype scale.
 - Improvement of upscaling method
 - Spatial layout of subgrid scale structure is not considered.

Thank you for your attention

Appendix

Comparison of each roughness parameterization in terms of arrival time from onshore to inland by DFM, CERM, SRM and URM.

Dashed lines for solitary wave

Detailed Results (max. depth)

Detailed results (Momentum flux)

Mesh size dependency

JCCE 2018