

Numerical Simulation of Cyclone Nargis (2008) and Its Related Wave Field at Myanmar Coast by Using WRF-SWAN Model

Department of Civil and Environmental Engineering Graduate School of Creative Science and Engineering Waseda University

Thit Oo Kyaw, Waseda University, thit_oo_kyaw@toki.waseda.jp Tomoya Shibayama, Waseda University, shibayama@waseda.jp

Presented by: Thit Oo Kyaw 30th July 2018

Outline

- Background
- Cyclone Nargis
- Methodology
- Simulation of Cyclone Nargis by WRF-ARW
- Wave Simulation by SWAN
- Validation of Simulation Results
- Summary

https://en.wikipedia.org/wiki/Cyclone_Nargis

Background

- Seasonal TCs originate at BOB
- 1877-2009, 83 out of 1333 storms (6%) formed at BOB crossed Myanmar (DMH, Myanmar)
- Cyclone Nargis (2008) & its induced wind waves were reproduced by WRF-ARW & SWAN
- Raju et al., 2011; Tasnim et al., 2015, studied cyclone Nargis & its subsequent storm surges, this research mainly focuses on configuration of wind waves caused by cyclone Nargis at Myanmar coast.

Cyclone Nargis

- Most severe cyclone in recorded history of Myanmar & most devastating cyclone in Asia since 1991.
- Landfall at Ayeyarwady Delta, 250km Southwest of Yangon, on night of 2nd May 2008.
- SSHS Category 4

Methodology

Simulation of Cyclone Nargis by WRF-ARW

Map Projection

Land Surface

- Mercator

Time step

- 30 s

Radiation

- Noah
- RRTMG Long & Short Waves

Cumulus

- Kain-Fritsch
- Planetary Boundary Layer YSU

Sensitivity Analysis

Two microphysics schemes with four different initial times

I. Microphysics Schemes (cloud & precipitation)(i) WSM-6(ii) Ferrier

II. Initial Time for Simulation

(i) April 29 00UTC (iii) April 30 00UTC(ii) April 29 12UTC (iv) April 30 12UTC

w.

WASEDA University Sensitivity Analysis of Cyclone Track Simulated by WRF-ARW

(i) WSM-6 Microphysics Scheme $(Q_{v}, Q_{c}, Q_{r}, Q_{s}, Q_{i}, Q_{g})$

(ii) Ferrier Microphysics Scheme (Q_v, Q_c, Q_r, Q_s)

Final Result of WRF Simulation for Cyclone Nargis

Wave Simulation by SWAN

SWAN Simulati

Simulating WAves Nearshore

Model Setup

- 3rd Generation (Komen, 1984)
- Physics : Breaking, White capping, Bottom friction, Quadruplet interaction
- Frequency range 0.02 1.0 Hz
- Direction division 36
- Time step

ii.

- 5min

Model Output

- Significant wave height (Hs in m)
- Peak wave period (Ts in s)
- iii. Mean wave direction (Degrees)
- Waves executed by SWAN are standardized against global wave model (Wave Watch-III) from NOAA and Satellite Wave Data.

WaveWatch III Model by NOAA

Multi-grid spectral wave model, run 4 times a day at 9 rectilinear global & regional nested grids

Model Input

- Wind input: GFS, 0.5° resolution at 1hr intervals
- Bathymetry: ETOPO-1 (Amante and Eakins, 2009) & GSHHS Database

Model Output

Field output in grib2 format, every 3 hr

wind = U- & V-component of 10m wind (m/s)
hs = significant height of combined wind waves &
swell (m)

tp = wave peak period (s)

dp = mean wave direction (degrees true north)

WAVEWATCH III Regional Views

Validation with NOAA WaveWatch III Model

Selected Points for Validation

Point No.	Geographic Location	Water Depth (m)
1	93.5°E 16°N	2100.7
2	93.5°E 15.5°N	1523.3
3	94.5°E 15°N	56
4	95°E 15°N	49.7
5	95.5°E 15°N	78.6
6	96.5°E 15.5°N	16.6

10/11/2018

Comparison of Wind Parameters

- NCEP Final Operational Global Analysis (FNL)
- ✓ Global Forecast System (GFS)

- \rightarrow WRF Model
 - \rightarrow NOAA WaveWatch III Model

Ws : Wind Speed, Wdir: Wind Direction

Comparison of Wind Parameters

10/11/2018

WASEDA University

Comparison of Wave Parameters (Hs & Tp)

10/11/2018

WASEDA University

Comparison of Wave Parameters (Hs & Tp)

10/11/2018

Comparison of Wave Parameters (Hs & Tp)

WASEDA University

Comparison of Wave Parameters (Wave Dir:)

Comparison of Wave Parameters (Wave Dir:)

Satellite Altimetry Wave Data

- Measure the time it takes a radar pulse to make a round-trip from the satellite to the sea surface and back
- I7 Satellites (Past + Current + Future Missions, 1985-2021) by EUMETSAT, NASA-NOAA (US)

 9 Satellites for current mission (1:ERS1 ; 2:ERS2 ; 3:ENVISAT ; 4:TOPEX/POSEIDON ; 5:JASON1 ; 6:GFO ; 7:JASON2 ; 8:CRYOSAT ; 9:SARAL)

 Accessible via online data sharing centre: *Aviso , GlobWave*

Jason-2 Jason-2 Geosat GF0 TOPEX/POSEIDON

Credits: CnesCLS

Satellite Altimetry Wave Data

Satellites that passed over BOB (1st to 3rd May 2008): *2:ERS2, 3:ENVISAT, 6:JASON1, 7:GFO*

SWAN Vs. Satellite Data (Hs)

Summary

- Hindcasting of Cyclone Nargis (2008) & its induced wind waves are conducted by numerical modeling using WRF-SWAN model in a top-down structure.
- > The reliability of the model is also validated in each simulation step.
- The WRF simulated cyclone track and intensity are in good agreement with observed data from IMD.
- The SWAN wave simulation wave results also agree with NOAA WWIII global wave model & satellite altimetry wave data.
- Maximum significant wave height: 5.2m, Peak wave period: 5.5s with waves coming from northwest direction most of the time was observed.

Thank you for your attention !

References

- Bhaskaran, P. K., Nayak, S., Bonthu, S. R., Murty, P. L. N., & Sen, D. (2013). Performance and validation of a coupled parallel ADCIRC-SWAN model for THANE cyclone in the Bay of Bengal. *Environmental Fluid Mechanics*, *13*(6), 601–623. https://doi.org/10.1007/s10652-013-9284-5
- Hope, M. E., Westerink, J. J., Kennedy, A. B., Kerr, P. C., Dietrich, J. C., Dawson, C., ... Westerink, L. G. (2013).
 Hindcast and validation of Hurricane Ike (2008) waves, forerunner, and storm surge. *Journal of Geophysical Research: Oceans*, *118*(9), 4424–4460. https://doi.org/10.1002/jgrc.20314

India Meteorological Department. (2013). Cyclone Warning in India Standard Operation Procedure.

- Mesoscale and Microscale Meteorology Division National Center for Atmospheric Research (NCAR). (2017). Weather Reseach and Forecasting-ARW. Version3 Modeling System User's Guide, (January), 434. Retrieved from http://www2.mmm.ucar.edu/wrf/users/docs/user_guide_V3.8/ARWUsersGuideV3.8.pdf
- Nayak, S., Bhaskaran, P. K., & Venkatesan, R. (2012). Near-shore wave induced setup along Kalpakkam coast during an extreme cyclone event in the Bay of Bengal. *Ocean Engineering*, *55*, 52–61. https://doi.org/10.1016/j.oceaneng.2012.07.036

WASEDA University **References**

- Ou, S. H., Liau, J. M., Hsu, T. W., & Tzang, S. Y. (2002). Simulating typhoon waves by SWAN wave model in coastal waters of Taiwan. *Ocean Engineering*, *29*(8), 947–971. https://doi.org/10.1016/S0029-8018(01)00049-X
- Pattanayak, S., Mohanty, U. C., & Osuri, K. K. (2012). Impact of Parameterization of Physical Processes on Simulation of Track and Intensity of Tropical Cyclone Nargis (2008) with WRF-NMM Model. *The Scientific World Journal*, 2012, 1–18. https://doi.org/10.1100/2012/671437
- Raju, P. V. S., Potty, J., & Mohanty, U. C. (2011). Sensitivity of physical parameterizations on prediction of tropical cyclone Nargis over the Bay of Bengal using WRF model. *Meteorology and Atmospheric Physics*, 113(3), 125–137. https://doi.org/10.1007/s00703-011-0151-y
- Skamarock, W. C., Klemp, J. B., Dudhi, J., Gill, D. O., Barker, D. M., Duda, M. G., ... Powers, J. G. (2008). A Description of the Advanced Research WRF Version 3. *Technical Report*, (June), 113. https://doi.org/10.5065/D6DZ069T

Swan, T. (2009). USER MANUAL SWAN - Cycle III version 41.01A. Cycle, 126.

References

- Tasnim, K. M., Shibayama, T., Esteban, M., Takagi, H., Ohira, K., & Nakamura, R. (2015). Field observation and numerical simulation of past and future storm surges in the Bay of Bengal: case study of cyclone Nargis. *Natural Hazards*, *75*(2), 1619–1647. https://doi.org/10.1007/s11069-014-1387-x
- Xie, D. mei, Zou, Q. ping, & Cannon, J. W. (2016). Application of SWAN+ADCIRC to tide-surge and wave simulation in Gulf of Maine during Patriot's Day storm. *Water Science and Engineering*, *9*(1), 33–41. https://doi.org/10.1016/j.wse.2016.02.003

Xu, Y., Gao, F., Zhang, C., & Luan, Y. (2015). Wave Analysis for West Coast of South Myanmar. In MATEC Web of Conferences, 25 (2015) 04012 (Vol. 2, pp. 1–7). https://doi.org/https://doi.org/10.1051/matecconf/20152504012