Role of Aggregation In the Settling of Cohesive Flocs Ashish J. Mehta Nutech Consultants, Inc., Gainesville, FL 32606, USA William H. McAnally Dynamic Solutions LLC, Knoxville, TN 37919, USA Farzin Samsami Hariot-Watt University, Edingurgh EH14 4AS, UK **Andrew J. Manning** HR Wallingford, Wallingford, Oxon OX10 8BA, UK Floc growth (aggregation by collisions) Floc breakup (disaggregation by collisions and flow shearing) Shear rate G Volume fraction φ (or mass concentration *C*) Diameter d_f Density ρ_f Settling velocity w_s $w_s = f(G, \Phi)$ ## Manning and Dyer (2002) ## Manning (1999) ## Model DANU for aggregation dynamics (McAnally 1999) n = number of particles per unit volume m = particle massIncrease in n_k due to aggregation by collisions Increase in n_k by disaggregation due to collisions Decrease in n_k due to disaggregation by collisions Decrease in n_k by aggregation due to collisions Δn_k Decrease in n_k due to disaggregation of by flow shear m_{k-2} m_{k-1} m_k m_{k+1} m_{k+2} m_{k+3} $\rightarrow m_k$ 1.00E-02 $y = 1.43E-06x^{1.33E+00}$ **Manning (1999)** Tamar neap 15 Shear rate, $G(s^{-1})$ 10 25 Shear, differential settling and Brownian motion (Danumodeling) 20 Maggi (2007) See also Lee et al. (2011)