EXTENDED BOUSSINESQ EQUATIONS FOR WAVES IN TWO POROUS LAYERS

Changhoon Lee !, Van Nghi Vu 2, Tae-Hwa Jung * and Thanh Thu Huynh *

In this study we continue the work of Vu et al. (2018) [Coastal Eng. 139, 85-97] to develop an
extended Boussinesq model that predicts the propagation of water waves in two porous layers.
The first and second layer can be a water layer or a porous layer. The inertial and drag
resistances are considered in the developed model. After being successfully validated against
the analytical solutions, the model is used to simulate waves propagating over a submerged
triangular porous bar. The numerical results show good agreement with the physical
experimental data of Hsiao et al. (1998) [Proc. Royal Society of London A 458, 1291-1322].
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INTRODUCTION

There exist multiple porous layers in coastal area. Submerged breakwaters are composed of two layers,
i.e., upper non-porous water layer and lower porous layer. Rubble mound breakwaters are composed of
two layers with different porosities. Sand beach is composed of one porous layer on the land side from
the coastline. Also, it is composed of two layers with upper water and lower porous layers on the sea
side. We need to have a wave model for such multiple porous layers. Until now, the Boussinesq
equations have been developed for two layers with upper non-porous water layer and lower porous
layer (Cruz et al., 1997; Hsiao et al., 2002). Liu and Wen (1997) developed conventional Boussinesq
equations in shallow water for waves inside porous media including drag resistance but neglecting
inertial resistance. These models cannot be applied for rubble mound breakwaters or sand beach. Lee et
al. (2014) and Vu et al. (2018) developed extended Boussinesq equations for waves in porous media
which considers drag and inertial resistances. The numerical solutions of their model are well verified
by comparison with exact solutions and physical experiment data. In this study, we continue the work of
Lee et al. and Vu et al. to develop a model for waves in two porous layers which can solve the
aforementioned problems. The validity of the developed model is examined by comparing numerical
results with analytical solution and experimental data.

DEVELOPMENT OF GOVERNING EQUATIONS

Setting-up boundary value problem

In order to develop the extended Boussinesq equations for waves inside porous layers we first set up
boundary value problems for waves inside multiple porous layers. The whole domain is vertically
divided into the 1st, 2nd,..., and j—¢h layers which are numbered from the top to the bottom layers

with different porosities, as shown in Fig. 1. The free surface is located at the 1st layer.
Since the porosity is uniform, the continuity equation inside the j—¢h permeable layer is given by

V..U, =0 (1)
where U= (u,v,w) is the seepage velocity vector, V, =(8/x,0/dy,6/0z) is the three-dimensional

gradient operator, and the subscript j implies the j—th layer. The momentum equation inside the

j —th permeable layer is given by
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du,. 1 3 )
7+pv (pj+pgz)+Dj+[j—O )

where p; is the pore pressure, D, is the permeable drag resistance term, and /; is the inertial

resistance term. It should be noted that the continuity and momentum equations (1) and (2), respectively,
are expressed in terms of the seepage velocity of the pore water.
Several people defined the drag resistance term differently. Ergun (1952) define the drag resistance

term in the Forchheimer (1901) type using a volume-averaged discharge velocity U, ’(= A,U j) . In our

study, we use Ergun’s definition of D in terms of the seepage velocity instead as
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where «, and o, are coefficients which represent the laminar and turbulent flow resistances,

respectively, v is the kinematic viscosity of water, and d is the solid size. The mathematical form of
Eq. (3) including the parameters A, v, and d can be derived from the Navier-Stokes equation (Irmay,
1958) or from the Reynolds equation (Burcharth and Andersen, 1995). The inertial resistance term /;

is given by

I E[(l—l)(l+l{)%} @

J

where A is porosity, and x is added mass coefficient. In unsteady flow, the inertial resistance term is
necessary to consider the divergence and convergence of streamlines in the presence of the solid
material. The resistance term should consider both the local and convective accelerations. In Eq. (4),
the value unity which is added to the added mass coefficient is to consider the inertial resistance of the
water with the volume of solid material, and the added mass coefficient is to consider the inertial
resistance in view of geometrical smoothness of the solid material. When the layer is filled with water,
then 4 =1 and the inertial resistance term becomes zero. When the layer is fully filled with the solid

material, then A =0 and the inertial resistance term becomes infinitely large.

Several people proposed different momentum equations including the drag and inertial resistance terms.
Sollitt and Cross’ (1972) momentum equation is the same as the present momentum equation (2) except
that the convective acceleration is neglected to get a linear solution. van Gent’s (1994) momentum
equation is the same as the present momentum equation (2). However, he defined the inertial resistance
term only in the local acceleration as

h= /1.j B atj ©)

where the value unity, which is omitted, should be added to the added mass coefficient. Cruz et al.
(1997) proposed the momentum equation as

J dt

(P, +pgz)+D,+1,=0 6)

where the drag resistance term is defined in terms of the seepage velocity as

D, =(eU+a;|U]U) ™

where @, and @ are coefficients which represent the laminar and turbulent flow resistances,
respectively, and the inertial resistance term is defined as
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du,
1,=(1-2,)(1+x,) . ®)

The pressure p; in Eq. (6) is a volume-averaged pore pressure because the spatial variation of the
pressure is related to the acceleration of the volume-averaged discharge velocity 4,dU, /a’t.

Substitution of Egs. (3) and (4) into the present momentum equation (2) gives

v, Ly U =0 )
PG (4 p)+aU, -

where f3; is the inertial coefficient given by

B, E[l+(1—/t)lcl_ (10)
and o, is the porous resistance coefficient given by
-2 v . 1-21
J
At the free surface, the dynamic and kinematic boundary conditions are given by
pl = O’ z = 77 (12)
w=eu vy, oz (13)

where uz(u,v) is the horizontal velocity vector and Vs(a/ax,(?/@y) is the horizontal gradient

operator. At the impermeable bottom under the lowest J — ¢4 layer, the normal velocity vanishes as
UJ-V3(z+hJ)=wJ+uJ-VhJ=O, z=—h, (14)

At the interface between the layers of different porosities, the pore pressure should be continuous in
terms of the local pore pressure instead of the volume-averaged pore pressure. The difference of
pressure forces between the layers will act on the solid material in the layer of smaller porosity. To the
contrary, the normal flux at the interface should be continuous in terms of the volume-averaged

discharge velocity. Thus, at the interface between the j—th and ( j+l)—th layers, both the pore

pressures at and normal fluxes through the interface are continuous as

P =P 2=k (15)

A (w,+u, Vi) =2, (w, +u

Jj+l Jj+l

Vh), z=-h (16)

J

We get the Boussinesq equations by specifying the boundary value problem with a governing equation
and boundary conditions. The seepage velocity potential is defined as

U, =V,0, (17)
Then, the continuity equation (1) becomes
0’0,

2
Vo, + 822120, ~h,<z<ng (18)

At the free surface, the dynamic and kinematic boundary conditions (12) and (13) become, respectively,

v, 1
ﬁl[a—t1+5(v3®l)2}+gn+alfbl:0, z=7 (19)
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ob, Jn
—=—+VO0, .V, = 20
= o v z=n (20

At the bottom, the kinematic boundary condition (14) becomes

0D,

oz

=-V®,-Vh,, z=-h, (21)

At the interface, the continuities of the pore pressure and normal flux (15) and (16) become,
respectively,

ob. 1 2
B { at] +§(V3‘D1‘) :|+ajq)j
(22)
ov,,, 1 2
= ﬂjﬂ 7+E(V3q}j+1) + aj+l(Dj+l’ z= _hj
oD, o,
4, . +VO,-Vh, |=4,, o +VO, ,-Vh,, |, z=-h (23)
The variables are normalized using the relevant characteristic length and time as
h
x’=§, y':%, z'=hi, h‘=hi, n'="1, t’=—‘g; °t,
0 0 a (24)

O'=

h /
_—®, u'Z—Ou, [ —
al\/gh, a-/gh, v &h

where [ is the wavelength, 7, is the maximum water depth, @ is the maximum amplitude of the water

o

surface elevation, 7 is the wave period. When the normalization is applied, the terms in the governing
equation and boundary conditions will group according to two non-dimensional quantities

70 (25)

where & is the nonlinearity parameter and & is the dispersivity parameter. Omitting the primes for
convenience, the continuity equation (18) and boundary conditions (19)-(23) become, respectively,

ﬂ2V2®_+52 L=0, -l<z<en (26)
J 6 2 ’
2
,uz ﬂ1&+a1q)1+77 +€ﬂll /12 (V(D1)2+ @ =0, z=¢e&n (27)
ot 2 Oz

oo on
a—zlz,uz[5+gV®l~V77j, z=¢n (28)
8;2’ =—’VO,-Vh,,  z=—h, (29)
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s bl 1|( oD, ’ 5 2
H [ﬁj5+aj)®j+gﬁj5[( o ] tH (V(Df) ]

oo Y G0
0 1 - 2
= luz (ﬂjﬂ E—i_a‘jﬂjq)jﬂ +¢& j+1 5[( a; : j +ﬂ2 (Vq)j+1) :l: z= _hj
oo, 0,
/Ij Eﬁ-,u V(DJVhI :/Ij+1 74’[[ V(Dj+l'th+1 ) Z:—hj (31)
The velocity potential can be expressed as a power series in the vertical coordinate given by
D, (x,y.zt) =Y [z+h (x.y)] ¢, (x.3.1) (32)
n=0
Then, we have
VO, = Z:(;(Z+ h) Vo,, +§(z+ h) (n+1)(Vh)) o, .. 33)
VO, =Y (z+h)) Vg, + > (z+h) (n+1)[ 2Vh; Vo, ., +Vh, ¢, ., ]
n:O n=0 (34)
c n 2
+ 2 (z+h) (n+1)(n+2) (V) 0, .
n=0
o, & n
8zj = ":O(z+hj) (n+1) o, ., (35)
IO, & ’
P :Z::O(z+hj) (n+1)(n+2) o, ., (36)
Substitution of Egs. (34) and (36) into the continuity equation (26) gives
n+l1)(n+2 [1+,u2 Vh, 2] O ..
()21 (V) [, o
+(n+1) [ 2Vh, Vo, . +Vh @, ., |+ 4V, =0, n=012L
Substitution of Egs. (33) and (35) into the bottom boundary condition (29) gives
Vh, -V
@ = _,uz % (38)
1+ 42 (Vh,)

And, the velocity potential functions in the lowest layer ¢;;, ¢;3.--- can be expressed in terms of
®,, using Egs. (37) and (38) as

:—’U—2V2 *V.|Vh,(Vh, -V o(u’ 39
SRECTIT R >

]
) :ﬂ—[ZVhJ V(V2,,)+V2h, V2, +V (Vh, -V, ,) |+ O(4°) (40)

Thus, the velocity potential in the bottom layer @, can be expressed to the order of 0( ,112) as
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2

D, =0, —%[2(Z+hJ)VhJ Vo, +(z+h,) v2¢,,0}+0(/¢4) (41)

Development of Boussinesq equations for waves in two porous layers
For two permeable layers, all the subscripts j in the variables are j=1,2. Thus, from Eq. (41), the
velocity potential in the bottom layer @, becomes

2

D, =0, —%[2(z+h2)Vh2 Vo, +(z+h) V2¢2’0}+O(,u4) (42)

The velocity potentials @, and @, are related through the interface boundary conditions (30) or (31).
We obtain the velocity potential function in the Ist layer ¢, by applying the interface boundary
condition (31) with j =1 and using Eq. (42) as

0., =i {Vh1 Vo, +%v [(hy=h )V(oz,o}} +0(u*) (43)

And, the velocity potential functions in the 1st layer ¢,,,@,;,... can be expressed in terms of ¢, , and

®,, using Egs. (37) and (43) as

2
., = —%Vzwl,o +o(u) (44)
9, =0(u') (45)

Thus, the velocity potential in the 1% layer @, can be expressed to the order of 0( ,uz) as

O =9, —%2<z(z +hy ){Vhlww +%v [(hy—h )V%)O]}ﬁu (z+h) v2¢1,0>+ 0(,u4) (46)

The momentum equation in the 1% layer is obtained by substituting Eq. (46) into the dynamic free-
surface boundary condition (27) and then applying V to the resulting equation as

0
(ﬂl > +a, ]“1,0 +Vn+efu,,-Vu,
(47)

2

0 2 2 4
—%(ﬁla+ale{h1V~uw+2hIV}h-ul,o+2hl%v'[(hz—hl)llzs()]}zo(gﬂ ,,u)

where u, , =V, is the seepage velocity in the 2" Jayer. The momentum equation in the 2™ layer is

obtained by substituting Eqgs. (42) and (46) into the interface continuity of pore pressure (30) with
j =1, and then applying V to the resulting equation as

0
(ﬂl E"' aljul,o +efu - Vu,,
0 /UZ 2 2 4 @9
:(ﬂ25+a2){u2’0—TV[Z(hZ—hl)th-uz)O—ir(hz—hl) V-uz’oJ}Jrg,Bzuz,O~Vu2)0+0(5y ')

Or, using Eq. (47),
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(ﬂz +a2}“20+vﬂ+gﬁz“zo Vu,,

_%(ﬂz +a2j I:z(hz _hl )th Uy +(h2 - hl )2 V'uz,0:| (49)

_ﬂ?(ﬂ1%+aljv<2@{m-um ’;jv[h —h) ]uzo}mlv u10> O(ey u)

Here, we use the depth-averaged velocity defined as

en
! Vo,dz, j=1
_ h+eéen S
E (50)
VO, dz, =2
hz _hl :[ ’ /

After substituting Eq. (46) into Eq. (50) with j =1, the seepage velocity at the lower boundary of the

1% layer can be expressed in terms of the depth-averaged velocity as

/JZ }712
u,=u +7{?V (V-u,)+hV(Vh -0 )+hVhV-u +2VhVh, -ﬁl}
(5D

+%2<hIV{%V-[(hZ ), 298 22V [0 _@)a2]}>+0(ﬂ4)

After substituting Eq. (42) into Eq. (50) with j =2, the seepage velocity at the lower boundary of the
2" layer can be expressed in terms of the depth-averaged velocity as

2 h _ 2
u,, =1, —i—’u?[MV(V-ﬁz)—i-(h2 —hl)V(th -ﬁz)—i-(h2 —hl)thV-ﬁ2 +2Vh,Vh, -ﬁ2]

3 (52)
+0 (,u4 )
Substitution of Egs. (51) and (52) into Eq. (47) gives the momentum equation in the 1st layer as
0 _ o
(ﬂl 5“%]“1 +Vn+egfu, -Vu,
HW(,0 h 4 &9
7(/31 5+alj<?v(v 'l_ll)_hlv[v '(hlﬁl )]_hlv{zv '|:(h2 —h )ﬁz]}> = 0(5/127#4)
Substitution of Egs. (51) and (52) into Eq. (49) gives the momentum equation in the 2nd layer as
0 _ o7 0
B, 5+a2 u, +Vn+sghu,-Vu, +7 B, 5+a2 X
2 2 _ _ _ _
[__(hz _hl) V(V'uz)_(hz _hl)V(th '“z)_(hz _hl)v(hz —2h1)V-u2 +2VhVh, '“2} (54)

__(,31 WJ {V-(hfﬁl)+2hl%v'[(hz —fa)ﬁz]}=0(€ﬂ2’ﬂ4)

The continuity equation is obtained by substituting Eq. (46) into the kinematic free-surface boundary
condition (28) as

0
a?w [(h +en u1]+—V [(h,~h)u,]=0 (55)
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Eqgs. (53)-(55) are the set of Boussinesq equations for waves in two permeable layers.

If the 1st layer is not in porous media but in clean water, then 4, =1, f =1 and «, =0, and thus Eqs.

(53)-(55) become the Boussinesq equations of Cruz et al. (1997) which are for waves on a single
permeable layer. If the 1st layer is in clean water and the interface between the Ist and 2nd layers is

rough, then 4, =1, f,=1and 4, =1, o, = f |U| /2 where f is the friction factor related to the shear

stress on the rough interface. Further, if waves are very long, the resulting equations (53)-(55) are
similar to the shallow-water equations of Kobayashi (1986).

In physical variables, Egs. (53)-(55) are

0 _ - o=
(ﬂla_'_al]ul +gVn+pu, -V,

+%(ﬂl §+alj<%zv(v-ﬁl)—@v[v (hu, )]—hlv{%v [(, —hl)ﬁz]}> =0 "

(ﬂzgﬂxzjﬁz +gVn+ A0, - Vi, +%(ﬂ2§+azjx

[—%(hz RV, )~ (b — )V (V) — (b — 1)V (hy ~ 2 )V T, + 2VA T, -az} (57)

—%(ﬁlgmljv{v-(ﬁﬁl)u@ %V[(hz —hl)ﬁz}} =0
2—;7+V~[(hl+n)ﬁ1]+%v-[(h2—hl)ﬁ2]:0 (58)

Extended Boussinesq equations for waves inside two permeable layers

The momentum equation (56) is rewritten by expanding the dispersive term as

(ﬂlg"'aljﬁl"'gvn"'ﬁﬁl‘vrll

ot

fs,0 Wy )nv 2 [(h —n e

+2(:B1 6t+alj< 3 V(V “1) hlv{}L1 \ [(hz hl)“2]}> (59)

1 0 _
(31 )AL e W[5 ()] nehT [V (5 )] -0
From the lowest-order momentum equation in the 2™ layer, we can get the following relation
ou, 1 _
—=——(a,u, +gV 60
o 5, ( U, ~ gV ) (60)

Using this relation, the last term in the momentum equation (59) becomes

v{@%v.{(llz—hl)(ﬂl%”‘lj‘_‘z} 61)
- v<hl%v'{(hz —@)H“l % %jﬁz ‘g%V”w

From the above equation, the zero equation is obtained by multiplying a small number —y, as
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et phtrony

O

When this is added to Eq. (59), we have the extended momentum equation

(62)

0 _ _ _ 1 0 2
(ﬁ25+a2Ju2 +gVn+pu,-Vu, +E(ﬂ25+a2j{—§(h2 —hl)zv

(V-1,)~(h, =)V (Vh, -0, )~(h, ~ )V (h, = 2h)V -, + 2V VA, -, |

__(ﬁl +alj [v.(hzﬁlﬂ{(lwz)[ﬁl +alj+y2{a2%_alﬂx (63)
v{hl%v'[(hf”l)‘_‘z]}—%g?V{ ﬂ1v[h —h) Vﬂ]}

NUMERICAL VERIFICATION

Numerical scheme

The finite-difference method is applied to solve the extended Boussinesq equations (58), (59), and (63).
The time derivative terms are discretized with the Adam-Bashforth-Moulton predictor and corrector
scheme following Wei and Kirby (1995). The first-order spatial derivative terms are discretized up to

O(Ax“). The higher-order spatial derivative terms in the momentum equations that are dispersive

terms are discretized up to O (Ax2 ) . The variables 7,u,,u, are placed in an un-staggered grid system.

Egs. (58), (59), and (63) can be rewritten in one-dimensional domain as

1, = E@,uy,u,) (64)
WU, (u,,u,)], = F,(n,u,,u,)+ H, (u,) (65)
(U, (u,,u,)], = F,(,u,,u,) + H, (u,) (66)
where
E (nuy,uy) ==[ (b +7)u | —%[(hz —h)uy | (67)
[U1(uy,u,)], = F (7.u;,u,) + H, (uy) (68)
[Us(uy.u,)], = Fy (7.u;,u,) + Hy () (69)
[U)(uy,uy)] =1 +%h12um —[%+ 71jh1 (huy),, (70)
Fl(ﬂ,ul,uz):—%iul—ululx—énx—é%hl M+Eﬁi%hl(h2—hl)u2” o

1
o3 o ), + 2ot (),
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Hl(uz):%hl%[(hz—hl)“z]m (72)

12 1 1
[Uz(ulauz)]=“z—5{§(hz—h1)2 MZxx:|_E(h —h )hZ\'x E(hZ_hl)hZXMZx (73)
1
+—(hy = Iy ) (2~ hy )X e+ Iyt = (147,) Al hlx [(hz _hl)uzJ —(1+7,) =k Al hy [(hz _hl)MZ:IXX

2 B A B A

FZ(ﬂsul’u2):_%”2_u2u2x l}g’? +é%(h2_hl)2u2xx+%%(h2_hl)hZ)cqu
2 2 2 2
74
+%—j(h2—hl)h2,(u2x %;—j(hz—hl)(zhl hy), g, ~ 5 hlxh2xu2+(l+}/2)ﬁ; 12{ (5~ )us ] (74)
1
2 [ —al] h1|:(/’l2 uz]} +72§ gl j:{h |:(/’l —h1)77x:|x}x 2;1 (hQ )
Hy(u) == 2( U 1) (75)

The term with the subscript in Egs. (64)-(75) implies that the term is taken derivative with respect to the
subscript. The third-order Adams-Bashforth predictor scheme is used as

At
nml 77)1 1 (23 En 16 En—l 5 En—z ) (7 6)
At
( fln+1 ( fln 12 (23 Fln 1 6 Fln—l 5 Fvln—Z ) 2 Frln 3 Frln—l Frln—Z (77)
(’ZVH—1 (‘2n 12( 3 2’Z 16 2"—1 5 2’1_2) 211; 311;_1 1{;-2 (78)

where the superscripts n and #+1 denote the present and the future time steps, respectively. The

+1 1 1 1 . .
variables u" and v'” which are included in U,"; and V,";' , respectively, are calculated using the

LU decomposition method. After the values of (7, u, v)l.‘j are evaluated, the fourth-order Adams-

Moulton corrector scheme is used as

A
77n+1 — 77n + 2; (9En+l +19En —SEVFI +Ei172) (79)
n+l n At n+l n n—1 n-2 n+l n
Ut =U +£(9Fl +19F" —SK"™ + F'7 )+ H™ - H, (80)
n+l n At n+l n n—1 n—2 n+l n
uU: =U2+£(9F2 +19F) =5 + F)7 )+ Hy" - H, (81)

The corrector step is iterated until total relative error between successive results is within a certain
limit.

MODEL VERIFICATION
Linear waves inside two porous layers

The computational domains for waves propagate in 2 porous layers are given in Figs. 1 (a) and (b). The
laminar and turbulent resistances and the added mass coefficient of the two porous layers are the same
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and given by o, =150, a, =1.75, k =0.47, the porosities are 4 =0.44;0.9 , the material sizes are
d=0.6Tcm;3cm .

sponge
layer wave

source

a)
A=1 1st layer

K MN A . . Z
sponge
layer wave b)

W source
\__\\//\ N A D PRORS NS

Figure 1. One dimensional computational domain

Figs. 2 (a), (b), and (c) compare numerical solutions of water surface elevation and wave amplitude
with the corresponding analytical solutions in shallow and deep waters with different porosities. The
water depth of lower layer is double the upper layer (i.e., 4, =24, ). In this case, the wave amplitude is

negligibly small and thus, we can use the analytical solution for linear waves given by q, exp(—kl.x)

where £, is imaginary part of the complex wavenumber. The numerical solutions of surface elevation

and wave amplitude are almost the same as the analytical solution for all the cases. In deep water with
the first non-porous water layer and the second porous layer, waves propagate with almost no energy
dissipation. Waves in shallow water are damped more than in deep water.

khy =017, h,/h =2, T =6sec khy=m,h, /h =2,T =1.6sec

nfa,

nfa,

WU N PR -

ol L

e
1
T

R R )

Figure 2. Normalized water surface elevation and amplitude in shallow (left ﬁgures) and deep
(right figures) waters. a) 4, =1, 4, =1;b) 4, =1, 4, =044, d,=0.67cm;¢) 4, =09, d =3cm,
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A,=0.44, d, =0.67 cm blue solid line = numerical solution of water surface elevation; dashed
line = numerical solution of wave amplitude; filled circle = exact solution of wave amplitude..

Waves over a submerged triangular porous bar

Furthermore, the numerical results of the developed model are verified with the experimental data of
Hsiao et al. (2002) for nonlinear waves. The experiment was conducted for the horizontal one-
dimensional waves propagating over a submerged triangular porous breakwater. Waves with height of
2.7 cm and period of 1 sec are internally generated in a constant depth of 0.175 m. The porosity
characteristics of the porous breakwater are given as A4=042 , ¢, =1100 ,

a, =0.81,x =0.47,d=19 mm .The computational domain with 9 wave gauges is given in Fig. 3.

sponge sponge
layer ~ wave layer
] A Gl G2 G3 G4 G5 G6 G7 G8 G9
§*_<W \ 8 |2 | 03] 03 lo02]02]02]02]02]
<—< — L I I I 1 I T I I |

—g_(- 0.175
Q:}_{ 7 ’ ) 10.135 L
distances in meter | 12 | 08 |

Figure 3. Computational domain given by Hsiao et al. (2002)

Fig. 4 shows that the numerical solutions of water surface elevations are close to the experimental data
at all gauges. It should be noted that using the present model we do not need to use any matching
conditions at the interfaces of the submerged porous breakwater. It should be noted that gauge G1 was
installed in front of the toe of the submerged breakwater while gauge G7 was at the crest of the
breakwater.

1 (cm)

1 (cm)
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time (sec) i i i i
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Figure 4. Comparison of present numerical solutions with experimental data of Hsiao et al.
(2002): solid line = numerical solution; filled circle=experimental data

CONCLUSIONS

This paper derived an extended Boussinesq model for waves in two porous layers considering inertial
as well as drag resistances. For linear waves in two porous layers, numerical solutions are close to
analytical solutions. For waves above a submerged triangular porous breakwater, numerical solutions
are well compared with the experimental data of Hsiao et al. (2002).
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