

Simulation of Tsunami Force in the Presence of Beachside Structures

Tomoaki NAKAMURA

Dept. of Civil and Environmental Eng., Nagoya University, Japan

Aya YAMASHITA

Furukawa Co., Ltd., Japan

Norimi MIZUTANI

Dept. of Civil and Environmental Eng., Nagoya University, Japan

Yonghwan CHO

Dept. of Civil and Environmental Eng., Nagoya University, Japan

Background & Objective

- To deal with massive tsunamis ("level 2" tsunamis; e.g., 2011 Tohoku earthquake tsunami)
 - Construction of shore protection facilities for tsunamis at relatively high frequencies ("level 1" tsunamis)
 - Concept of disaster mitigation using multifaceted countermeasures is also essential

One of such concepts: Beachside rigid structures

 Expected to be effective for disaster mitigation (e.g., possible to reduce tsunami force on rear buildings)

Marine Pal Onagawa, Miyagi Pref., Japan (http://commons.trincoll.edu/)

<u>Objective</u>

- To demonstrate the computational capability of our numerical model (FS3M) to simulate tsunami run-up and force
- To evaluate the influence of rigid structures on tsunami force on a rear building

What is FS3M?

3-D coupled *F*luid-*S*tructure-*S*ediment-*S*eabed interaction *M*odel (FS3M; Nakamura and Mizutani, 2014)

LES-based Navier-Stokes Solver (LES)

To compute incompressible viscous air-water multi-phase flow (including seepage flow in porous media)

Volume-of-Fluid

Module (VOF Module)

For air-water interface tracking Based on multi-interface advection and reconstruction solver (MARS; Kunugi, 2000)

Sediment Transport Module (ST Module)

To compute seabed profile evolution due to bed load and suspended load, and the distribution of suspended sediment concentration

Immersed-Boundary

Module (IB Module)

For fluid-structure interaction Based on body-force type of immersed-boundary (IB) method (Kajishima and Takiguchi, 2002)

Finite Element Module (FE Module)

For coupled soil-water analysis Based on finite element method computing the *u-p* approximation of the Biot equation

Fluid Dynamics Model (LES + VOF module)

- Large-eddy simulation (LES) model based on the dynamic twoparameter mixed model (DTM; Horiuti, 1997)
- Governing equations <u>Continuity equation</u>

$$\frac{\partial \left(m \overline{v_j} \right)}{\partial x_j} = q^*$$

Navier-Stokes equation

- Turbulent stress based on the DTM
- Surface tension force based on the continuum surface force (CSF) model
- Laminar and turbulent resistance forces in porous media (Mizutani et al., 1996)

$$\begin{cases} m + C_A (1-m) \\ \frac{\partial \overline{v_i}}{\partial t} + \frac{\partial \left(m \overline{v_i} \ \overline{v_j} \right)}{\partial x_j} \\ = -\frac{m}{\hat{\rho}} \frac{\partial \overline{p}}{\partial x_i} + mg_i + \frac{m}{\hat{\rho}} \left(f_i^s + \overline{R_i} + \overline{f_i^{ob}} \right) + \frac{1}{\hat{\rho}} \frac{\partial}{\partial x_j} \left(2m\hat{\mu}\overline{D_{ij}} \right) + \frac{\partial}{\partial x_j} \left(-m\tau_{ij}^a \right) + \overline{Q_i} + m\overline{\beta_i} \end{cases}$$

Advection equation of the VOF function

$$m\frac{\partial F}{\partial t} + \frac{\partial \left(m\overline{v_j}F\right)}{\partial x_j} = Fq^*$$

Computational Conditions

• For validity, FS3M was applied to a large-scale hydraulic experiment (scale: 1/25) conducted at Oregon State University

Computational domain (cross-sectional view)

Deformation of Run-Up Tsunami

• Flow field around the elements and specimen

Baseline (no elements)

<u>Setup 4, *d*/*a* = 4</u>

Comparison

WG2

0.3

0.2

0.0

0.3

0.2

0.0

0

5

0

5

(II) 0.1

Water surface elevation η (Setup 4, d/a = 1)

10

15

20

t (s)

20

t (s)

25

30 35 40

WG2^{Tsunan}WG4

Reserve

25

30

35

40

25

30

35

Exp

Cal

40

0

5

10

15

20

t (s)

25

30

35

40

5

0

10 15

Roughness

element \

WG6

NAGOYA

WG7

11.25

Specimen

(unit:m)

Exp ·

Cal

15

10

20

t (s)

Good agreement with experimental data • Difference in the phase of the reflected wave because no absorbing beach was installed

<u>Comparison</u>

 Tsunami force F in the direction of tsunami propagation

- Landward force (F > 0) can be predicted reasonably well
- Similar with η , there is a difference in the seaward force (F < 0) because of the difference in the reflected wave
 - Computational capability of FS3M is demonstrated in terms of η and F

Influence of Elements

- Reduction rate of the maximum tsunami force $F_{\rm max}$ against the no-element baseline case $F_{\rm bmax}$

Influence of Elements

- Reduction rate of the maximum tsunami force $F_{\rm max}$ against the no-element baseline case $F_{\rm bmax}$

Influence of Elements

• For more complicated arrangement

Evaluation of Maximum Tsunami Force

Maximum tsunami force F_{max} can be predicted reasonably well regardless of the number and arrangement of the elements

From the concepts of
 momentum conservation
 and drag force, Yeom et al.
 (2007) proposed

$$F_{0\max} = \frac{1}{2} \rho C_D a \left(\eta_0 u_0^2 \right)_{\max}$$
 Eq. (1)

 C_D : Drag coefficient (= 2.0 here) η_0 , u_0 : Inundation depth and bottom flow velocity without the specimen ρ : Density of water a: Width of the specimen

$$F_{d} = \frac{1}{2} \rho_{s} C_{d} B \left(hu^{2}\right)_{\text{max}} \text{ (FEMA P646)}$$

$$F_{dx} = \frac{1}{2} \rho_{s} I_{tsu} C_{d} C_{cx} B \left(hu^{2}\right) \text{ (ASCE 7-16)} 12$$

Influence of Suspended Sediment

- Tsunamis consist of a mixture of water and sediment
- Necessary to consider the influence of suspended sediment (i.e., change in fluid density and viscosity)
- FS3M can deal with the change in fluid density and viscosity due to suspended sediment

Change in fluid density

$$\hat{\rho} = (1 - C) \{ F \rho_w + (1 - F) \rho_a \} + C \rho_s$$

Change in fluid viscosity for kaolin clay

C: Concentration F: VOF function $\rho_{w}, \rho_{a}, \rho_{s}$: density of water,

air, sediment particles

Influence of Suspended Sediment

• Maximum tsunami force induced by quasi-steady pressure F_{xs}^{max}

- Maximum tsunami force F_{xs}^{max} increases with the suspended sediment concentration C_0
- Increase in the maximum tsunami force $F_{xs}^{max}/F_{xs0}^{max}$ can exceed that in the fluid density ρ/ρ_w

 \Longrightarrow Essential to consider the change in fluid viscosity as well $_{14}$

<u>Summary</u>

- The computational capability of FS3M to simulate tsunami run-up and force was demonstrated in terms of water surface elevation, inundation depth, and tsunami force
- The influence of macro-roughness elements can be estimated from the combination of the influence of each element
- The maximum tsunami force can be predicted reasonably well using the estimation equation regardless of the number and arrangement of the elements
- The increase in the maximum tsunami force can exceed that in the fluid density; thus, it would be essential to deal with tsunamis containing suspended sediment

Questions?

Acknowledgements: We would like to thank Prof. Cox at Oregon State University for providing valuable experimental data