Modelling wave attenuation due to saltmarsh vegetation using a modified SWAN model

Elizabeth Christie¹, Iris Möller¹, Tom Spencer¹, Marissa Yates², Ben Evans¹

> ¹Cambridge Coastal Research Unit Department of Geography University of Cambridge

²Laboratoire d'Hydraulique Saint-Venant Cerema

ICCE, July 2018

Introduction

- Increased recognition of the role of coastal wetlands in coastal protection
- Coastal Protection is provided through a stable landform and hydrodynamic resistance by the vegetation
- Coastal vegetation (including saltmarsh) have been shown to dissipate waves

Wetlands as Coastal Defence

Cumulative interventions

Spalding et al. 2014.

Wave energy dissipation due to vegetation

The vegetation wave dissipation formula is based on the Morison equation, which describes the force of a wave on a cylinder. The current SWAN vegetation uses a modified version of the Dalrymple et al. (1984) wave dissipation formula by Mendez and Losada (2004).

$$\langle \epsilon \rangle = \frac{1}{2\sqrt{\Pi}} \rho \tilde{C}_D D_v N_v \left(\frac{gk}{2\sigma}\right)^3 \frac{\sinh^3 kH_v + 3\sinh kH_v}{3k\cosh^3 kh} H_{rms}^3$$

where ρ =water density, $\tilde{C_D}$ =bulk drag coefficient, D_v =vegetation stem diameter, N_v =number of plants per m^2 , k=mean wave number, σ =mean wave frequency, H_v =vegetation height, and h=water depth.

In SWAN, this formula has been extended to include the full spectrum by Suzuki et al. (2012) and incorported as a sink term:

$$S_{ds,veg} = -\sqrt{\frac{2}{\Pi}}g^2 \tilde{C}_D D_v N_v \left(\frac{\tilde{k}}{\tilde{\sigma}}\right)^3 \frac{\sinh^3 \tilde{k} H_v + 3\sinh \tilde{k} H_v}{3k \cosh^3 \tilde{k} h} \sqrt{E_{tot}} E\left(\sigma,\theta\right)$$

Wave energy dissipation due to vegetation in SWAN

Wave energy dissipation is a function the plant characteristics:

- H_v : Vegetation Height
- D_v : Vegetation diameter
- N_v : Number of plants per m^2
- C_D : Bulk drag coefficient

Within SWAN-VEG D_v and N_v can vary spatially, and D_v , N_v and C_D can vary vertically. C_D is fixed over time, and H_v is fixed spatially

Empirically calculated Drag Coefficient

$$K_C = \frac{U_m T}{D_v}$$

 U_m : max bottom orbital velocity

T : wave period

$$Re_{v} = U_{m} \left(\frac{D}{v} \right)$$

D: vegetation diameter ν : kinematic viscosity $(\nu = 1 \times 10^{-6} m^2 s^{-1})$

Objectives

- Introduce a time-varying C_D into SWAN-VEG.
- Introduce and spatial varying H_V .

C_D Empirical Data: Möller et al. (2014)

Hydralab large wave flume, GWK Hannover, wave attenuation over saltmarsh under storm conditions by Möller et al. (2014)

- Flume dimensions: 310m long, 5m wide, 7m deep
- Approx 40m long Test section of excavated saltmarsh blocks
- Using data for irregular waves in 2m water depth (H_s 0.111-0.909, T_p =1.44-6.26)

$C_D \sim Re_v$ Relationship

From Möller et al. (2014)

 $C_D = 0.159 + \left(\frac{227.3}{Re_s}\right)^{1.615}$

 $r^2 = 0.99$

Reynolds Number

 10^{2}

 10^{1}

100

0 200 400 600 800 1000 1200

Ĵ

New relationship based on median

Large wave flume results with SWAN

Saltmarsh transect: Möller et al. (1999)

Validated against the wave dissipation measurements of Möller et al. (1999). 197*m* saltmarsh transect at Stiffkey, North Norfolk, UK.

Vegetation Parameters: $H_v = 0.11m$, $D_v = 0.00125m$, $N_v = 1061$

SWAN run as 1D transect over 6 wave bursts with large waves, the test conditions are: h = 0.74 - 1.19m, $H_s = 0.27 - 0.52m$, $T_p = 1.86 - 6.83s$

Saltmarsh transect: Results

Sensitivity Testing: Storm Timeseries

200*m* Transect: $H_v = 0.4m$, $D_v = 0.00125m$, $N_v = 1061$. Wave setup and breaking included

Sensitivity Testing: Spatial Varying Vegetation

Includes wave breaking and setup $H_s = 0.5$, $T_p = 4s$ Vegetation: Mean $H_v = 0.25m$, $D_v = 0.0045m$, $N_v = 1061$

Discussion

Future work: Currently setting up a 2D case at Tillingham, UK, using a diamond shaped pressure sensor transect to calibrate.

Conclusions

- Introduced Varying C_D and spatial varying vegetation height in the SWAN-VEG module.
- Varying C_D allows prediction of the wave dissipation over a timeseries.
- Spatial varying vegetation height is useful for 2D modelling and cases where vegetation is varied or patchy.

Thank you! Any Questions?

