

# National Scale Multi-Hazard Model Platform for Extreme Cyclone Impacts on Coasts and Infrastructure

David Taylor, Dr Joanna Aldridge, Jarrod Dent & Jim Churchill 36<sup>th</sup> International Conference on Coastal Engineering August 2, 2018



# **Presentation Outline**

- Project Background
- Model System Framework
- Model Components
  - Synthetic cyclone tracks
  - Wind
  - Tide and storm surge
  - Inundation and hazard assessment
  - Rainfall
- Australian Cyclonic Storm Tide Hazard Dataset
- Latest Model Developments



TC Debbie satellite image. Source: Bureau of Meteorology



TC Yasi Impact Port Hinchinbrook Marina, Cardwell. Source: BBC

# **Project Background and Model Drivers**

- Fundamental gap in quality of data and methods between:
  - Local/Regional scale high-resolution hazard assessments
  - Large scale hazard data sets
- Large scale cyclone hazard data sets had numerous problems
  - Australia's 3 major insurance companies have exceeded their natural catastrophe loss provisions between 8 and 9 years out of the last 10-years<sup>1</sup>
- Project Objective
  - Approach coastal zone catastrophe modeling using coastal engineering and applied science methods





Risk Estimate from Return Period Hazard

## **Model System: Overview**

- Synthetic cyclone track model is key component of the system
- Common track data set applied across all model components to provide event based data of winds, storm tide inundation and rainfall
- Focus on adopting open source process models coupled with Baird's synthetic track model system

B.



# **Model System: Synthetic Track Model**

- Random walk model with conditional probability functions to simulate the evolution of cyclone tracks in time and space
  - Source terms are conditional rates of change in speed, heading and central pressure
- Model domain can cover entire cyclone basins
- Methods outlined in Taylor *et al* (2009) and Burston *et al* (2015)



## **Model System: Synthetic Track Model Validation**

 Model validation focused on independent variables that are not source terms



B.

19

## Frequency of Cyclone Landfall by Region



# **Model System: Parametric Wind Model**

- Holland (2010) model including forward asymmetry and radius to gale force winds (R34)
- Inland decay and land friction accounted with parametric functions
- Model validated against long term wind measurements at key sites and Australian Wind Code (AS/NZS1170.2:2011)



B.

19

## Tropical Cyclone Kathy (1984) - NT



## Model System: Tide and Storm Surge Model

• Integrated Delft-FM models

#### Delft FM Model System – Australian Cyclone Region





Tide Validation Metrics – 48 Standard and Secondary Ports

| Sites = 48 | Bias (m) | Model Skill | RMSE (m) |
|------------|----------|-------------|----------|
| Mean       | 0.00     | 0.99        | 0.11     |
| Std.       | 0.02     | 0.01        | 0.11     |
| 5%         | -0.01    | 0.98        | 0.02     |
| 50%        | 0.00     | 1.00        | 0.08     |
| 95%        | 0.03     | 1.00        | 0.31     |

## **Model System: Storm Surge Model Validation**

- Storm surge validated against available gauge data for over 30 events
- Wind drag coefficients at low wind speed examined see Churchill *et al* (2017)



19



## TC Yasi – Modeled Wind and Storm Surge





# **Model System: Inundation**

Swash Model – Full Dune

- GIS based solution which accounts for hydro-connectivity to the ocean
- 20 m resolution DEM developed across the whole of model area – LiDAR data covers most populated areas
  - ≈ 235 million points in DEM
- Wave contribution added to areas exposed to open coast









**B.** \_\_\_\_\_\_ 19 81

# **Model System: Rainfall**

- Combined effects of rainfall run-off and elevated ocean water levels can significantly amplify flood impacts
- Parametric cyclone rainfall model for North Queensland (Burston et al, 2017) developed from hindcast WRF model data





## **Australian Cyclonic Storm Tide Hazard Dataset**

- Computed from simulation of ≈ 85,000 discrete events
- 10,000 year event set with spatial time series for all events:
  - Inundation extents and flood depths for events exceeding HAT
  - Data compiled into a range of data formats
  - Storm tide hazard estimates benchmarked against local hazard studies at 32 sites

## **Example TC Event Set Data**

19



### 500-year ARI Inundation – Cairns, Darwin & Port Hedland



## Latest Developments: Atmospheric Modeling of Cyclone Winds

- Parametric cyclone wind model have limitations, particularly when cyclones interact with land
- Example WRF Simulation TC Debbie (2017)
  - Spatial Resolution: 4km
  - Vertical Resolution: 36 Vertical Layers
  - Boundary Forcing: ERA5 (hourly)
  - Sea-Surface Temperature: ERA5 (hourly)
  - Microphysics: WSM 6-class graupel scheme
  - Planetary Boundary Layer: YSU Scheme





## **Tropical Cyclone Debbie (2017) – Modeled and Measured Wind**





# Latest Developments: Coupled Storm Tide and Rainfall Inundation

- Severe inundation impacts often from combined effects of local rainfall in addition to elevated ocean water levels
- Coupled storm tide and rainfall model developed for North Queensland using TELEMAC-SS model presented in Kelly *et al* (2018)



Inundation from Storm Tide and Rainfall - Cairns



**Cairns Mesh** 

# **Summary and Conclusions**

- A large scale multi-hazard cyclone model system has been demonstrated on a national scale
- Validation completed for all components of the model
  - Storm tide hazard estimates benchmarked against a large sample of local and regional storm tide studies
- Data set has been adopted for regional hazard planning and insurance pricing
  - Also adopted as input data for local scale hazard and engineering studies
- Further development areas:
  - Climate change impacts
  - Hydraulic modeling of inundation from ocean inundation and rainfall
  - Process based wind and/or atmospheric modeling to address limitations of parametric models





## References

- Burston J, Taylor D, Dent, Churchill, (2017). Australia-wide Tropical Cyclone Multi-hazard Risk Assessment. *Proceedings* of Coasts and Ports 2017. Cairns, June 2017.
- Burston J, Taylor D, and Churchill J. (2015). Stochastic Tropical Cyclone Modelling in the Australian Region: An Updated Track Model. *Proceedings of Coasts and Ports 2015.* Auckland, September 2015.
- Churchill J., Taylor D., Burston J., and Dent J. (2017). Assessing Storm Tide Hazard for the North-West Coast of Australia using an Integrated High-Resolution Model System. Proceedings 1st International Workshop on Waves, Storm Surges and Coastal Hazards – Liverpool, UK 10-15 September 2017.
- Kelly D., Luczko E and Fullarton M. (2018). A Multi-Model Approach to Simulate The Storm Surge at Puerto Rico Due to Hurricanes Irma and Maria. *Proceedings of 36<sup>th</sup> International Conference on Coastal Engineering*. Baltimore, 30 Jul – 3 Aug 2018.
- Taylor, Branson, and Treloar, (2011). "Monte Carlo Cyclone Track Model System for the Pilbara Coast." *Proceedings of Coasts and Ports 2011.* Perth 2011.



