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HOW CAN WE TRANSLATE THE REFERENCE FRAMEWORK INTO PRACTICE?
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IHcantabria Risk framework: multi-hazard, multi-risk

VIulti-impact: impacts occurring at the same time or shortly following each other which overlap,
accumulate or cascade; different impacts threatening the same exposed elements (with or without
temporal coincidence)

e Multi-hazard: different drivers that combine to produce an impact; simultaneous or sequential
occurrence of extreme or non-extreme events that may lead to an impact.

e Multi-sectoral and multi-vulnerability: A variety of exposed sensitive targets (e.g. natural systems,
population, infrastructure, cultural heritage, etc.) with possible different vulnerability against the
various hazards

e Time-dependent vulnerabilities: vulnerability of a specific class of exposed elements may change
with time as a consequence of different factors (e.g. the occurrence of other hazardous events)

e Multi-risk: ‘

o itis related to multiple risks such as economic, ecological, social etc.
o It determines the whole risk from several impacts, taking into account possible hazards and
vulnerability interactions among sectors, hence entailing multi-impact, multi-hazard, multi-
4 uc  sectoral and multi-vulnerability perspective.
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IHcantabria Risk framework: horizon and time evolution
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What is the baseline period for your risk assesment?
Horizons? Projections must cover a range of timescales relevant for planning

purposes: <20-year: payback period for an investment; 20-50 year: lifetime of infrastructure projects
>100 years? lifetime of “nature based solutions” (saltmarsh/mangrove forest restoration-managed
realignment, etc) ‘ Different degree of uncertainty

What are the RCPs or scenarios to be selected?

Time evolution of risk is strongly dependent on the evolution of hazard, impacts,

exposure and vulnerability. Nonstationary approach is needed!
(time evolution of the return period of various damage levels; time-evolution of the mean and variance
of annual damages)

Timing: Present and future resilience of coastal systems is to be determined. Timing of
storms/impacts has an important effect on risk. Similar to the introduction of
adaptation measures in the analysis.

s wili el " e S = L 36TH INTERNATIONAL CONFERENCE
4l

ST AR e S —=£ - Ny ON COASTAL ENGINEERING 2018

Baltimore, Maryland | July 30 — August 3, 2018

2019



ascade of uncertainty

Global mean sea level rise
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Appropriate spatial scale should be identified based
on the magnitude and spatial distribution of the
phenomena to tackle and the questions to be
answered

Need for downscaling methods

Downscaling methods are strongly dependent on the framework
» probabilistic vs non probabilistic
* Processed based models vs simplified methods/indicators
* Computational and economic resources
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Statistical Downscaling

Dynamic Downscaling

Strengths

Computationally efficient

Requires only monthly or daily GCM output

Can relate GCM output directly to impact-relevant variables not

simulated by climate models

Explicitly consists of both large-scale and
small-scale physical processes, up to the
resolution of the model

Regional climate response is consistent with
global forcing

Can be applied to any consistently- observed variable

Can provide site-specific estimations

Provides data that is coherent both spatially
and temporally and across multiple climate
variables

Can be used to generate a large number of realizations in orde;_I
to quantify uncertainty

Can be used in regions where no
observations are available

Weakness

Based on the essentially unverifiable assumption that statistical
relationships between predictors and predictands remains

stationary under future change

Assumes that sub-grid parameterization
schemes remain stationary in the altered
climate

Sensitive to choice of predictors and GCM ability to simulate
these predictors

Sensitive to initial boundary conditions from
GCMs

Tends to underestimate temporal variance

Requires long-term observed data

Highly computationally demanding

Difficulty to generate multiple scenarios

Drivers
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* Most of the work already developed neglecting waves may be appropriate for regional
scales BUT not everywhere

* Local implementation (adaptation projects) requires the full range of dynamics to be
considered with the relevant resolution (RSLR, astronomical tide, storm surge, waves,
river discharge and local precipitacion)

* RSLR projections must be extended beyond 2100 to understand real effects on long-lived
infrastructure investments.

e Scenarios must account for the full range of RSLR, including H++

* Not only extreme SLR projections matter! High probability RLSR in combination with
spring tides or non extreme SS/waves, may become already a problem for coastal

management.
Functional design
Operations thresholds
Maintenance strategies
Capital Expenditure (CAPEX) vs OPEX (Operation expenses)
Ecosystems services valuation
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Climate Change

Figure SPM.1

IMPACTS

Based on historical events; direct mapping; expert assessment

PHYSICAL models and NUMERICAL models
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Climate change-induced coastal flooding

WHAT HAS BEEN DONE SO FAR?

Dawson et Rosenzweig Hallegate et Hinkel et al. Muis et al. Reguero et al. Toimil et al.
al. (2009) et al. (2011) al. (2013) (2014) (2015) (2015) (2017)

Regional . Regional . Regional
SCALE 0(10km) City scale Global Global 0(1000km) Continental 0(100km)
MODELING 2D flood 2D flood
APPROACH etE i Bathtub Bathtub Bathtub Bathtub Bathtub i
STATISTICAL
APPROACH Probabilistic  Deterministic Deterministic  Deterministic Probabilistic  Deterministic Deterministic
Storm surge,
CURRENT Storm surge, Storm surge, SUelin surge, astronomical  Waves, storm Waves, storm
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Waves, tides  tide (DIVA,  tide (DIVA, tide (DIVA, = WUy B, B,
FLOOD . . o Vafeidis et al., astronomical astronomical
DRIVERS Vafeidis et al., Vafeidis etal., Vafeidis et al., 2008), river tide tide
2008) 2008) 2008) ’
flow
CLIMATE
CHANGE SLR, River Waves, storm
PROJECTIONS  Voves LR SLR SLR SLR flow SLR surge, SLR
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Sl SLR, River
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Camus et al. (2017)

Regional multi-model projections (RCP8.5, 2071-2099 with respect 1979-2005) for wave statistics along the
Coastline of Western South America (locations, intermodel changes of Hs, H95, Tp and 0)
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b1) (1) 99th percentile of the TWL for (1979-2005) (2) multi-ensemble indicator changes only due to changes in waves
and storm surge (3) regional sea level rise (from Slangen et al. (2014)) by 2100 (4) multimodel future
TWL (period 2070-2099) taking into account wave, storm surge changes and SLR for RCP8.5 Scenarios).

b2) (1) coastal structure freeboard for an operability near 95% (2) hours/year exceeding the overtopping rates

for pedestrians safety (3) multi model operability changes in hours/year for future period relative to present period
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Climate change-induced probabilistic erosion

WHAT HAS BEEN DONE SO FAR?
Bruun (1962) | Cowell et al. Revell et al. Ranasinghe et | Ranasinghe et Casas-Prat et Toimil et al.
(2006) (2011) al. (2012) al. (2013) al. (2016) (2017b)
EROSION S.t?tl.c Parametric Index-based Wave impact S.t?tlf: Empirical Dy‘n.arr.nc
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et al., 2008)
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* Coastal flooding: there are still open questions on how projected drivers need to be
statistically combined to feed process-based models considering their non-stationarity

* Coastal erosion: it is not clear how to model morphodynamics including non-linear process
interaction and multi-scale coupling beyond a few days

* Impacts on ports: lack of observations and lack of design standards; the way forward must
prioritize the assessment of functionality and stability of port’s structures considering non-
stationary reliability and resilience

» Saltwater intrusion: lack of monitoring to improve process understanding and mixing zone
changes mapping; modeling efforts need to be focused on uncertainty analysis

* Waste releases from eroded/flooded historical landfill sites: lack of monitoring, lack of
methods to assess the extent of pollution and lack of knowledge of the behaviour and
environmental impact of solid waste release in the coastal zone
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DETECTION AND ATTRIBUTION OF IMPACTS TO CLIMATE CHANGE AND SLR PROVIDES A
FORM OF VALIDATING AND REFINING PREDICTIONS ABOUT FUTURE CHANGES.

HOWEVER, THE CHALLENGE IS DAUNTING:

* Lack of high-resolution, continuous and long-term observations

« Systems are affected by many factors other than CC and SLR = double constraint: 1) non-
linear, non-local and trans-regional effects difficult to understand and quantify; 2) the
adaptive capaitcy of the systems enhances the challenge

* Need to improve existing techniques and develop new methods that allow addressing
attribution with greater confidence

Observations play a fundamental role!!
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SOLUTIONS SPACE: ONE OPTION, MANY LAYOUTS

Hans F. Burcharth , Thomas Lykke Andersen, Javier L. Lara (2014)
Upgrade of coastal defence structures against increased loadings caused by climate
change: A first methodological approach
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SOLUTIONS SPACE:

ONE OPTION, MANY LAYOUTS

Figure 4.21: Basic wet flood-proofing measures for a residential structure

Elevate all activities
which are not
compatible with
water above flood
elevation -
Living area
elevated above
design flood

Properly anchor all foundations to prevent
flood water washing them out and also to

avoid floatation of the structure if the flood
waters get too high

Provide openings or break-away
wall sections to allow free
passage of water

Figure 4.22: Basic dry flood-proofing measures for a residential structure
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Waterproof coatings and Movablk barrier
coverings to ensure water ) coq openings such as windows
cannot soak through such as doors elevated above
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SOLUTIONS SPACE:

Building codes

Sea wall

.......................................... T COMBINATION OF
................. Coastal wetland o PTI O N S

Initial
risk

Levees,

: alls
Risk flood w.
Building codes
Early warning and

Residual evacuation plans
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Cumulative interventions

Figure 2 Ecosystems can form an important part of risk reduction, which is typically achieved through a combination of environmental, engineered,
social, cultural, and legal approaches as illustrated in the upper figure. Cumulative interventions (lower figure) cannot remove risk, but rather reduce it to

an acceptable level of residual risk.

Spalding et al. (2014)
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SOLUTIONS SPACE:

NATURE-BASED
SOLUTIONS

“The best NBS is the one that already exists”
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Engineered structures have a design life, typically 20-50 years, and are built for design environmental,
climatic, and anthropogenic conditions over that period.

Ecosystems remain in place for much longer periods of time depending on climate and human drivers. How
do we measure the variability of the expected service over time, especially during the expected service life of
our NBS or hybrid solution?

How do we evaluate time to performance of a new NBS and residual risk evolution in time?

A major difference between NBS and conventional engineered structures is that ecosystems are highly
dynamic and may be able to recover and regenerate following damage. Engineered structures do require
human intervention for maintenance and repair after damage.

Can we estimate regenerative/adaptive capacity and overall ecosystem resilience during the expected service
life? Can we maintain or restore underperformance of NBS by human intervention?

4, \What are the failure modes, tipping points or operating thresholds for a given NBS performance?
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Deton A Path Relative Target Side ADAPTATION:
Action B actions Costs effects effects
1Q ++ + 0 HOW MUCH, HOW,
Cur.rent policy 200 +++++ 0 0 WH EN?
Action C 3 o . 0 0
Action D 4 +++ 0 0 .
Ay : Oo 5 5 How do we determine the
- + + + + 2 .
0 10 70 80 %0 oars 100 | 6 QO ++++ 0 Acceptable level of risk/
©  Transfer station to new action 70 4+ 0 Residual risk/
| Adaptation Tipping Point of an action (Terminal) s Q0 + + Ada ptation goa|?
e Action effective in all scenarios 9 o bt +
® @ Action not effective in scenario X . . .
What is the right time for
Adaptation Pathways Map Scorecard pathways a da ptati on ?

An example of an Adaptation Pathways map (left) and a scorecard presenting the costs What is the right adaptation
and benefits of the 9 possible pathways presented in the map. In the map, starting from  metrics?
the current situation, targets begin to be missed after four years. (Haasnoot et al 2013)
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CONCLUSIONS

Uncertainties in temporal and spatial distribution of risk component projections are still too large.
Probabilistic approaches are required.

The need of climatic and non-climatic information may vary considerably depending on time
horizon, spatial scale, impacts to be considered, sector to be addressed and decision level (planning,
design, implementation, operation)

Attribution is hampered by lack of observations and methods and the non-linear behaviour of the
systems

Observations cannot be replaced by numerical modelling but are essential to constrain and validate
the models developed to project future changes

There is still a long way to go for implementing adaptation projects in coastal areas using a full
engineering framework accounting for time variations (resilience, reliability) or adaptive pathways.
Flexible adaptation allows to cope with uncertain information. Different possible sequences of
adaptation measures combined with explicit learning about future climate based on monitoring
Even more open questions for considering NBS or hybrid solutions as part of our solutions space
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