

36TH INTERNATIONAL CONFERENCE ON COASTAL ENGINEERING 2018

Baltimore, Maryland | July 30 – August 3, 2018

MODELLING PARAMETERS AND IMPACTS OF FOUR EXTRATROPICAL CYCLONES UNDER FUTURE CLIMATE SCENARIOS

¹ Martin Mäll, ² Ryota Nakamura, ¹ Tomoya Shibayama, ³ Ülo Suursaar

¹ Waseda University, Tokyo, Japan

² Toyohashi University of Technology, Toyohashi, Japan

³ Estonian Marine Institute, Tallinn, Estonia

Baltimore 2018

Motivation & Objectives

Extratropical cyclones (winter storms)

Baltic Sea:

semi-enclosed, tideless, shallow, 50-60N zone of Westerlies

Pärnu Bay:

small (20*25 km), tideless, max depth 14 m, SW exposed, storm-prone

Fig 3. Snapshots showing the location of the study area (images: Google Earth).

Motivation & Objectives

- 2005 is the most extreme event on record (Fig 4 & 5).
- Mäll et al. (2017) studied the 2005 event under IPCC AR5 scenarios.
 - Storm did not get stronger

1923-2016. 160cm is the critical line for Pärnu.

Fig 5. Pärnu city. The blue fill shows the inundation during 2005 storm, and red line marks the critical line of 160 cm. Images above are from the 2005 event (image credit: Estonian Land Board).

Methodology - Framework

Fig 6. Flowchart of models and data used. **Blue** – the core models; **Red** – Initial data for hindcasting; **Green** – data for future simulations.

Methodology – WRF-ARW

Table 1. Initial and boundary conditions of WRF model.

	2005	2008	2010	2013	
Domain 1 UTC (res. 20 km)	01/06 00:00 - 01/10 12:00 (108 h)	11/19 18:00 – 11/26 00:00 (150 h)	02/26 00:00 - 03/03 18:00 (138 h)	10/26 00:00 - 10/31 00:00 (120 h)	
Domain 2 UTC (res. 4 km)	01/07 06:00 - 01/10 12:00 (78 h)	11/20 06:00 – 11/25 12:00 (126 h)	02/28 12:00 – 03/03 18:00 (78 h)	10/27 12:00 – 10/31 00:00 (84 h)	
Domain 3 UTC (res. 0.8 km)	01/08 06:00 - 01/10 12:00 (54 h)	11/21 12:00 – 11/25 06:00 (90 h)	03/01 12:00 – 03/03 18:00 (54 h)	10/28 06:00 – 10/30 12:00 (54 h)	
Time step	D01 - 120 seconds, D02 – 24 seconds, D03 – 4.8 seconds				
Map projection	Lambert conformal				
Pressure top; vertical layers	1 hPa; 61				
Micro physics	WRF Single-moment 6-class scheme (Hong & Lim 2006)				
Planetary boundary layer	Yonsei University Scheme; YSU (Hong & Lim 2006)				
Cumulus parametarization	Grell-Freitas Ensemble Scheme (Grell & Freitas 2014)				
Shortwave and longwave	RRTMG Shortwave and Longwave Schemes (Iacono et al., 2008)				
Land surface option	Unified Noah Land Surface Model (Tewari et al., 2004)				
Surface Layer option	MM5 Similarity Scheme (Paulson 2017, Dyer & Hicks 1970, Webb 1970, Zhang & Anthes 1982, Beljaars 1994)				
Forcing data	Climate Forecast System Reanalysis (CFSR) CFSv2			CFSv2	
Forcing data res.	Pressure levels (1): 0.5 * 0.5 deg ; Surface (2): 0.312 * ~0.312 deg (1): 0.5 * 0.5 deg (2): 0.205 * ~0.204 deg			(1): 0.5 * 0.5 deg (2): 0.205 * ~0.204 deg	

Fig 7. Simulation domains for the 2005, 2010 and 2013 cases.

Fig 8. Simulation domains for the 2008 case.

Methodology – FVCOM-SWAVE

Table 2. Initial and boundary conditions of FVCOM-SWAVE model.

	2005	2013		
Simulation time	01/08 06:00 - 01/10 12:00 UTC (54 h)	10/28 06:00 – 10/30 12:00 UTC (54 h)		
Calculation time step	Sea level – 2 seconds; Significant wave height – 30 seconds			
Nodes	63 189			
Cells	123 533			
Mesh size	50 – 2000 m			
Coastline data (Estonian Land Board; SRTM90; ETOPO1)	Pärnu City – 5 m; Pärnu Bay – 90 m; Rest of the study area – 1 arc min.			
Bathymetry data (Estonian Maritime Administration; ETOPO1)	Pärnu Bay and Pärnu River – 5m; Gulf of Riga, Väinameri and Irbe Strait – 50 m; Rest of the study area 1 arc min.			
SWAVE parameters				
Frequency range (Hz) 0.05 - 0.5				
Direction	Full circle			
Bottom friction	Madsen formulation (Madsen et al., 1988)			
Friction parameter	0.067			
Min water depth (m)	0.05			

Fig 9. The simulation domain of FVCOM-SWAVE, where a) shows the open boundary and location of station used for hindcasting and b) shows the water depth plotted over bathymetry mesh.

Fig 10. The bathymetry of FVCOM-SWAVE. Right hand image shows locations of measurement stations.

Methodology – Future scenarios (CMIP5)

- 15 selected GCM
 - RCP8.5
 - RCP4.5 (14 GCM)
- Future period
 - **2081-2099**
- Control period
 - **2006-2015**
- Interpolation
 - Future-Control difference

Table 3. Selected GCM's for future scenario calculations.

Model name		Atmospheric resolution		Ensemble	
	Model Institution	Horizontal	Vertical levels	number	Ensemble name
ACCESS1.0	Commonwealth Scientific and Industrial Research	102 145 (\$106)	29	1	r1ilp1
ACCESS1.3	(BOM), Australia	192 x 143 (1890)	30	1	rlilpl
BCC-CSM1.1 (m)	Beijing Climate Center, China Meteorological Administration	T106	26	1	rlilpl
CCSM4	National Centre for Atmospheric Research	0.9 x 1.25 deg	27	6	r1i1p1, r2i1p1, r3i1p1, r4i1p1, r5i1p1, r6i1p1
CESM1(BGC)	NES DOE NCAP	0.0 x 1.25 deg	77	1	r1ilp1
CESM1(CAM5)	NFS-DOE-NCAR	0.9 x 1.25 deg	27	3	rlilp1, r2ilp1, r3ilp1
CMCC-CM	Centre Euro-Mediterraneo per I Cambiamenti Climatici	0.75 x 0.75 (T159)	31	1	rlilpl
EC-EARTH	EC-EARTH consortium	1.125 long. Spacing, T159L62	62	4	rlilp1, r6ilp1, r8ilp1, r12ilp1
GISS-E2-H-CC	NASA Calded Institute for Sugar Studies	Nousing the 1 days	40	1	r1ilp1
GISS-E2-R-CC	NASA Goddard Institute for space studies	Nominally 1 deg	40	1	r lilp l
HadGEM2-AO	National Institute of Meteorological Research/Korea Meteorological Administration	1.875long x 1.25lat (N96)	60	1	r lilp l
HadGEM2-CC	UK Met Office Hadley Centre (additional		60	3	rlilp1, r2ilp1, r3ilp1
HadGEM2-ES	HadGEM2-ES realizations contributed by Instituto Nacional de Pesquisas Espaciais)	1.875long x 1.25lat (N96)	38	4	rlilp1, r2ilp1, r3ilp1, r4ilp1
MRI-CGCM3	Mataorological Pasaaroh Instituta	320 x 160 (TL159)	48	1	r1ilp1
MRI-ESM1	meteorological Research Institute			1	rlilp1

Results – Hindcast 2005 (Wind and sea level)

- Observed surge max: <u>2.75</u> m at 9 January 04:00 UTC
- Simulated surge max: <u>2.41</u> m at 9 January 00:20 UTC

Results – Hindcast 2013 (Wind and sea level)

- Observed surge max: <u>1.44</u> m at 29-Oct 07:00 UTC
- Simulated surge max: <u>1.19</u> m at 29-Oct 05:00 UTC

Fig 12. Hindcast results for 2013 wind (four left) and surge (right).

Results – GCM output

SST

- Twofold increase between scenarios
- AAT
 - ~ 2 K increase for RCP4.5
 - ~ 4 K increase for RCP8.5
- RH
 - More mixed
 - Negative up to 300 hPa
 - Positive up from 350-250 hPa

Table 4. Sea surface temperature (K) GCMensemble mean increase over WRF d01.

Scenario	<u>2005</u>	2008	2010	<u>2013</u>
RCP 4.5	<u>1.10</u>	1.47	1.07	<u>1.35</u>
RCP 8.5	<u>2.24</u>	3.03	2.15	<u>2.79</u>

Results – 2005 Future (Wind & sea level)

Hindcast max: 2.41 m; RCP4.5 max: 2.7 m; RCP8.5 max: 2.88 m

Fig 14. Hindcast and future wind speed, direction and surge comparison.

Results – 2013 Future (Wind & sea level)

Hindcast max: <u>1.19 m</u>; RCP4.5 max: <u>1.25 m</u>; RCP8.5 max: <u>1.5 m</u>

Fig 16. Wind field comparison between Hindcast and RCP8.5 simulation for the <u>2005</u> event. The four time-steps represent the hours leading to the maximum surge at Pärnu.

Fig 17. Wind field comparison between Hindcast and RCP8.5 simulation for the <u>2013</u> event. The four time-steps represent the hours leading to the maximum surge at Pärnu.

Coastal zone management in Pärnu

- Different storm surge related adaptation and response measures have been widely discussed (Fig. 18).
- Currently relied on <u>soft</u> <u>measures / smart</u> <u>solutions.</u>

Fig 18. Conceptual model of Pärnu Bay study area. **Grey** boxes – problems related to erosion and siltation, **Blue** boxes – inundation problems, **Brown** boxes – the most suitable response (after Tõnisson et al., 2018).

Conclusions

- Two storm surge inducing extratropical cyclones (ETC) in Estonian waters were studied under future climate change scenarios (2100 RCP4.5/<u>RCP8.5</u>)
- Numerical models (WRF, FVCOM-SWAVE) were able to capture these events with relatively good accuracy.
 - Wind peaks were well captured, however with some time lag. Mid-level values at some locations overestimated.
 - Surge heights were underestimated for both 2005 and 2013 ETCs.
- Future simulations showed some mixed results for wind speed (almost no change in direction):
 - Maximum wind speed values (against hindcast) had minor changes
 - 2005: increase in strong wind (\geq 20 m/s) area coverage, with southward extension.
 - 2013: area coverage of strong winds (≥ 20 m/s) decreased, however stronger concentrated area.
- Future sea level values showed increase for both ETC cases:
 - 2005: 16.7% increase, from 2.41 m to 2.88 m
 - 2013: 20.7% increase, from 1.19 m to 1.5 m

Thank you for your attention!

References

- Chen C, Liu H, Beardsley RC (2003) An unstructured grid, finite-volume, threedimensional, primitive equations ocean model: application to coastal ocean and estuaries. J Atmos Oceanic Tech 20:159–186
- Mäll, M., Suursaar, Ü., Nakamura, R. et al. Nat Hazards (2017) 89: 1119. https://doi.org/10.1007/s11069-017-3011-3
- Qi J., Chen, C., Beardsley R.C. et al. J Ocemod (2009). DOI: 10.1016/j.ocemod.2009.01.007
- Skamarock WC, Klemp JB, Duddhia J, Gill DO, Barker D.M, Duda MG, Huang XY, Wang W, Powers JG (2008) A description of the advanced research WRF version 3. NCAR Technical Note
- Tõnisson, H., Kont, A., Orviku, K. et al. J Coast Conserv (2018). <u>https://doi.org/10.1007/s11852-018-0637-6</u>
- Wu , L., Chen, C., Guo, P. et al. J Ocean Univ. China (2011). DOI 10.1007/s11802-011-1788-3

Appendix

Results - Significant wave height (no validation data)

Appendix 1. Simulated significant wave height spatial distribution for 2005 case during highest wave occurrence at 9-Jan 02:00 UTC.

2005 case during highest wave occurrence at 9-Jan 02:00 UTC.

Appendix 3. Significant wave height for Hindcast and future simulation at "point A" for a) 2005 and b) 2013 cases.