

36TH INTERNATIONAL CONFERENCE ON COASTAL ENGINEERING 2018

Baltimore, Maryland | July 30 - August 3, 2018

The State of the Art and Science of Coastal Engineering

Field study of contrasting beach recovery processes of observed in Nami-ita and Kiri-kiri coasts after the 2011 Tohoku earthquake

Kojima, Y., Tajima, Y., Matsuba, Y. & T. Shimozono, The University of Tokyo,

Terasawa, T., JIFIC, & K. Abe, Iwate Prefecture

1. Background

- The 2011 Tohoku Earthquake tsunami caused significant shoreline retreat along the northern Pacific coast of Japan.
- Beach recovery is one of crucial tasks because the beach provides an important resource of tourism and the beach has an important function of coastal protection.
- Most of the affected beaches have shown certain recovery while they have not yet fully recovered.
- Nami-ita coast also lost a large part of beach but yields little recovery even six years after the event (Yagisawa et al, 2016).

2. Analysis of shoreline change

Effective beach recovery measures?

Understanding sediment transport characteristics at Nami-ita coast is essential.

Comparisons of the initial damage and a recovery process of 10 selected beaches along the northeast coast of Japan after the 2011 Tsunami event including Nami-ita coast.

2. Analysis of shoreline change

- Satellite images on Google Earth were used.
- GIS was used to rectify the obtained images based on the same geographic coordinate system
- Cross-shore-ward distance from the base line to the shoreline was measured on GIS with alongshore intervals of 50 m.
- Characteristics of the initial shoreline retreat due to the 2011 Earthquake and the post-event recovery process at each coast were compared.
- Initial shoreline retreat was compared with the following parameters related to the 2011 event:

H: tsunami height at the coast

S: land subsidence

 A_{l}/L_{s} : representative inundation distance.

A_I: inundation area,

L_s: alongshore stretch of the shoreline

3. Analysis of shoreline change – Initial retreat –

- Initial shoreline retreat shows clear positive correlation with tsunami height and subsidence and negative correlation with A_I/L_s.
- Nami-ita coast, C, showed similar characteristics of initial shoreline retreat compared to the other coasts.
- Coasts E and IN showed larger shoreline retreat.
 Both coasts were near the river mouth and had a lagoon behind the beach.

In terms of initial shoreline retreat, Nami-ita coast shows similar characteristics with other coasts.

-50

Shoreline retreat [m]

100

150

4. Analysis of shoreline change – post event recovery –

The initial shoreline retreat of Nami-ita coast was similar to the other coasts.

However

- Recovery process of Nami-ita coast differs from the other coast.
 - Most of the coast:
 - ✓ quick recovery just after the event
 - ✓ gradual recovery after the quick recovery.
 - Nami-ita coast: little recovery.

What makes a difference?

Kiri-Kiri coast, D, and Nami-ita coast, C, are located next to each other in the same bay but their recovery characteristics are different.

5. Kiri-Kiri vs Nami-ita

Kiri-Kiri coast

- Kiri-Kiri coast was protected by breakwaters.
- The breakwaters were destroyed by the 2011 tsunami but was reconstructed after the event.
- Collapsed seawall was also reconstructed at the same location.
- The distance between the seawall and the shoreline was around 100 m.
- A part of beach remained after the event.
 - Breakwaters functioned to reduce the offshore-ward loss of sediment due to tsunami?
 - ✓ Milder waves behind the breakwaters enhanced the shoreward sediment transport after the event?
 - Beach in front of the seawall itself enhanced the recovery?

5. Kiri-Kiri vs Nami-ita

Nami-ita coast

- Nami-ita coast has three detached breakwaters on the north side and no breakwaters in the middle.
- The coast is known to be a good beach for surfing.
- Partially collapsed seawall was reconstructed at the same location.
- The distance between the seawall and the shoreline was 20 to 40 m.
- The entire beach was washed out by the event.
 - ✓ Nami-ita coast has higher waves than Kiri-Kiri coast.
 - √The seawall is exposed to the sea.
 - ✓ Reflected waves from the seawall may have significant influence on the shoreward sediment transport.

5. Kiri-Kiri vs Nami-ita

- Nami-ita coast
 - Nami-ita coast has three detached break the north side and no breakwaters in the
 - The coast is known to be a good beach f
 - Partially collapsed seawall was reconstruithe same location.
 - The distance between the seawall and the shoreline was 20 to 40 m
 - The entire beach was washed out by the
 - Nami-ita coast has higher waves than K coast.
 - √The seawall is exposed to the sea.
 - ✓ Reflected waves from the seawall may have significant influence on the shoreward sediment transport.

Is simple beach nourishment effective in Nami-ita coast?

6. Field experiment at Nami-ita coast

- To investigate the behavior of nourished sediments, sand tracer study was conducted.
- Blue sands ($D_{50} = 0.56$ mm) and white gravels ($D_{50} = 3-5$ mm) were respectively placed as a tracer at the shoreline at the high tide level on June 23rd, 2017.
- The number of tracer grains were counted along the coast.

6. Field experiment at Nami-ita coast

- Both blue sand and white gravels were transported in the southward alongshore direction.
- A large amount of blue sand was also transported off-shore-ward.
- White gravels showed no off-shore-ward movement and remained near the shoreline.

6. Field experiment at Nami-ita coast: summary

- Sand grains with a grain size of original beach materials are largely transported offshore.
- Gravels ($D_{50} = 3-5$ mm) remained on the beach.
- Reflected wave components were smaller in front of the coast where gravels were deposited.

- Partial gravel nourishment may be effective to:
 - (1) enhance the stability of nourished beach;
 - (2) reduce the wave reflection and enhance shoreward transport of offshore sediments.

6. Field experiment at Nami-ita coast

- Sand grains with a grain size of original beach materials are largely transported offshore.
- Gravels ($D_{50} = 3-5$ mm) remained on the beach.
- Reflected wave components were smaller in front of the coast where gravels were deposited.

- Partial gravel nourishment may be effective to:
 - (1) enhance the stability of nourished beach;
 - (2) reduce the wave reflection and enhance shoreward transport of offshore sediments.

7. Conclusion

Analysis of shoreline change

- Initial shoreline retreat showed positive correlation with tsunami height and land subsidence while it shows negative correlation with representative inundation distance, Al/Ls.
- In most of the coast, retreated shoreline showed relatively quick but a partial recovery after the event.
- Nami-ita and Kiri-Kiri coasts are located next to each other in the same bay but their recovery characteristics were different.
- Nami-ita and Kiri-Kiri are different in nearshore wave conditions and the location of the seawall relative to the original shoreline.
- Significant reflected waves at Nami-ita coast appear to have negative impact on shoreward transport of sediment deposited after the 2011 event.

■ Field experiment at Nami-ita coast

- Tracer gravels remained on the beach while a large amount of tracer sand grains were transported offshore.
- Gravel beach appears to reduce wave reflection from the coast and may accelerate the beach recovery.

Thank you for your attention.

