
TURBULENT OSCILLATORY FLOW OVER RIPPLES AT HIGH REYNOLDS NUMBERS
FOR PETA-SCALE SIMULATIONS

Guillermo Oyarzun, University of Patras, guillermo@upatras.gr

Athanassios Dimas, University of Patras, adimas@upatras.gr

INTRODUCTION

Surface waves in the coastal zone induce oscillatory
flow motions in the vicinity of the seabed. These wave-
induced coastal flows interact with the sandy seabed
and modify the bed shape by generating coherent
small-scale bed structures, which are generally known
as ripples. The presence of ripples in oscillatory flows
is important due to the impact they have on the seabed
roughness and how they affect the near-bed boundary
layer hydrodynamics. Simulations of higher and more
real-scale Reynolds number (Re) require the use of
supercomputers in order to obtain results in a
reasonable amount of time. However, the constant
evolution of the computing facilities makes the
development of parallel algorithms a rather difficult
task. The objective of the proposed research is to
advance in the comprehension of coastal processes
utilizing high performance computing (HPC) for the
numerical simulation of the three-dimensional,
turbulent flow, which is induced in the coastal zone by
wave propagation. In particular, our CFD code
(SimuCoast) has been developed using a hybrid
MPI+OpenACC execution model that increases its
scalability and allows it to engage the vast majority of
high-end supercomputers. Special attention has been
paid in the parallelization strategy of the Poisson solver
that is the most computational demanding operation.

METHODOLOGY

The discretization of the Navier-Stokes equations is
done on a Cartesian staggered grid following the
methodology proposed in Grigoriadis et al. (2012). The
numerical methodology is based on the extension of
the immersed boundary method proposed by Balaras
(2004) for representing the sea bottom. Additionally, an
adaptive mesh refinement is utilized for the numerical
solution of the equations. Large eddy simulation (LES)
was used for simulating turbulence. In this approach,
the flow structures are separated into the large eddies,
which are explicitly solved, and the small eddies, which
are parametrized with the use of an eddy-viscosity
subgrid scale (SGS) model.

HPC IMPLEMENTATION

SimuCoast is written in Fortran using an object
oriented implementation approach. Hence, the code
facilitates the programming of new math and physical
models, and encapsulates the complexity of the
parallelization strategy. The parallel strategy consists
in using a two-level hybrid MPI+OpenACC
parallelization (see Figure 1).

Figure 1 – Levels of parallelism and programming models
exploited by SimuCoast in a hybrid supercomputer.

The inter node implementation consists in a distributed
memory approach with communications that transfer
the information between processors by means of the
MPI protocol. The communication episodes are
performed in a non-blocking way that reduces part of
the communication costs and increases the scalability
code. The intra-node computing is based in the
OpenACC standard in order to exploit the different
computing units of the nodes (multicore CPUs or
accelerators). This approach facilitates the utilization of
hybrid nodes since its portability is simplified to just
changing the compilation flags of OpenACC, reducing
the programming costs of re-writing large parts the
code for using the accelerators.

The algorithm is based in the fractional step method for
decoupling the pressure and the velocities. The solution
of the Navier-Stokes equations is represented as loops
that sweep the computing domain (Cartesian grid) for
applying discretized operators. The iterations within
these loops are independent to each other, and thus
can be easily parallelized using OpenACC.

On the other hand, the Poisson equation needs to be
solved once per time integration step and becomes the
main bottleneck of the simulation. Our Poisson solver is
composed by a combination of the Fourier
decomposition for the two directions (x and y) with
periodic boundary conditions and a direct solver for the
z-direction (Borrell 2011). The improvements in the
solver have empowered our code (up to 60 times of
acceleration), making it capable of running peta-scale
simulations.

RESULTS

The numerical results of this study were performed on
the thin nodes of the Aris supercomputer of the Greek
research & technology network (GRNET), this is a tier-1
system of the Partnership for Advanced Computing in
Europe (PRACE). Each node is composed by two Intel
Xeon E5-2680v2 10-core processors interconnected by
a network Infiniband FDR1. The numerical experiments
consist in two stages: first the validation of the code, and
second, the analysis of the parallel performance of the
code.

SupercomputerMPI

OpenMPOpenCL Multicore CPUGPU accelerator

Stream multiprocessors

Common memory space

Hybrid node Ethernet Ethernet Hybrid node

Processor cores

Stream processing SIMD Shared memory MIMD

Distributed memory MIMD
Hybrid node

mailto:adimas@upatras.gr

We validated our code with the experimental case of
Fredsoe et al. (1999). HPC implementation allowed us
to work with a denser grid than the one of Grigoriadis
et al. (2012) and, consequently, achieving better
results for the velocity profiles (Fig. 2).

Figure 2 – Profiles of phase-averaged streamwise velocity
at the ripple crest (left: ωt = 0, right: ωt = 270).

The same flow was also simulated for a substantially
higher Reynolds number of Re=2×10

5
 which verified the

good scalability of our code. Figure 3 depicts that the
parallel efficiency of the code is up to 80% when using a
grid of 100,000,000 cells and engaging 64 computing
nodes (1280 CPU-cores).

Figure 3 – Strong speedup of the performed simulations for

three different grid sizes.

The direct Poisson solver for cases with two periodic
boundary conditions was compared with a commonly
used iterative solver, the Preconditioned Conjugate
Gradient (PCG). In cases with more than 50 million
cells, it was observed that the direct solver accelerates
the Poisson equation in more 60 times (Fig. 4).

Figure 4 – Average acceleration of direct solver
2FFT+TDMA compared with an iterative PCG solver

ACKNOWLEDGEMENTS

This work was funded by the matching contribution
(5231) of GSRT to the Initial Training Network
SEDITRANS, implemented within the 7th Framework
Programme of the European Commission, and was also
supported by computational time granted from the Greek
Research & Technology Network (GRNET) in the
National HPC facility – ARIS – under project ID
CoastHPC.

REFERENCES

Grigoriadis, Dimas and Balaras (2012): Large-eddy
simulation of wave turbulent boundary layer over rippled
bed, Coastal Engineering, vol. 60, pp. 174-189.

Balaras, E, (2004): Modeling complex boundaries using
an external force on Cartesian grids in large-eddy
simulations, Computers & Fluids, vol. 33, pp. 375-404.

Borrell, Lehmkuhl, Trias, Oliva (2011): Parallel direct
Poisson solver for discretisations with one Fourier
diagonalisable direction, Journal of Computational
Physics, vol. 230, pp. 4723-4741.

Fredsøe, Andersen and Sumer (1999): Wave plus
current over a ripple-covered bed, Coastal Engineering,
vol. 38, pp. 177-221.

