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3-D Shallow Water Flow Equations Y
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Eddy Viscosity

defy convention
Vertical S 1= [\2 . 1= 2
Vv = (ImV ‘Sv‘) +(ImH ‘SH D

where |S,] and |5,| are shear strains in vertical and horizontal directions:

S| =[(ou/ez)* +(ev/o2)*1"?
S|, =[2(au/ox)* +2(ov/dy)* + (Bu/dy +ov/ox)*]™?

/.,and /. are vertical and horizontal mixing lengths:

|, =xzV1-2z/h | . =xmin(l,c_h)

Ly = JXI2 + (1= X)I2, X =U2/(UZ+05U7)

where Zis the vertical coordinate above the bed, /is the horizontal distance to the
nearest solid wall, and /4 is the flow depth.

Horizontal

D 1/3
VtH :Vtv +waume +Cbrh( ;r]
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Boundary Conditions ]

Free surface kinematic condition

Surface shear stress due to wind 7. = p,CoWW.

where p, is air density, Cy is the wind drag coefficient, and W is the wind velocity. The
drag coefficient is calculated using the formula of Hsu (1988) and modified for high
wind speeds based on field data by Powell et al. (2003).

Bed shear stress

2
wm !

T, = pcfub\/utf +Vv; +0.5U Ty = pcfvb\/utf +v2 +0.5U2
where u, and v, are the x- and y-velocities near the bed; c; is the bed friction coefficient;

and U, is the maximum orbital bottom velocity of wave.
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CMS-Wave UNIVERSITY

defy convention

« Spectral wave-action balance equation (Mase, 2001)

N c,N oN Q & 0 cc, 2N U
qx qy q0 20 gy IWE 2 1y° §
N = E(f,0)
0}
 Characteristic velocities
C, = C,cos0+ U, C, = C,Sinf+ U,
C, = g in OL- cosO——+ coseésmeﬂu COS@M% sineg;in(%ﬂuy - coseﬂuyg
smh2kh Tv o X Y &

« Dispersion relation

o> = gk tanh(kh) 5= o- kU
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Wave Radiation Stress

defy convention

Formula of Mellor (2008)

S, :Iowfn{k(f)E(f,Q)P(‘(f)ki(f) cosh®k(h+2) _ sinh?k(h+2)

> _ i = +0;Ep (f,0) [dadf
k(f)® sinhkDcoshkD sinh kD cosh kD

where E is the wave energy, k is the wave number, 6 is the angle of wave
propagation to the onshore direction, f is the wave frequency, h is the still water
depth, D is the total water depth, z’ is the vertical coordinate referred to the still
water level, and E, is a modified Dirac delta function which is 0 if z#n and has
the following quantity:

|" Epdz=E/2
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Surface Roller

defy convention

As wave breaks, part of the energy goes into the aerated
region known as surface roller as momentum and later
transferred to the flow below.

Roller energy balance (Stive and de Vriend, 1994)
0(2E. c ) E,. — Rolle energy density
sr’j

PW .+ 1.0, D,, — Wave breaking dissipation

j D, — Surface roller dissipation
Assumptions f, — Efficiency factor
— Roller direction in same direction as waves

Roller dissipation D, = 92E, /o B, — Roller dissipation coefficient

C

Roller stress Ry =2E,R,ww;

4
2(Z -
R, :1_tanh{ (H 77)} (Warner et al., 2008)
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3D Mesh System R
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Numerical Solution Methods ]

Finite volume method,;

Fully implicit;

Non-staggered (collocated) grid,
SIMPLEC, with under-relaxation;

Rhie and Chow’s (1983) momentum interpolation for
Interface fluxes;

Upwind schemes:
» Hybrid, Exponential, HLPA
Solvers:

« GMRES
Drying and wetting: “Freezing” dry nodes.
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3-D Sediment Transport Model N

Suspended Load Transport
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ot 0 X oy L

Bed Change

.\ OZ 1
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Wu et al. (2000) Bed Load Formula S
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Extended to Coastal Sedimentation by Wu and Lin (2014, Coastal Engineering)
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Near-Bed Suspended-load Concentration EEEl

defy convention

Near-bed suspended-load concentration is
related to bed-load transport rate:

d«bk
5ubk

Cxbk =
Bed-load layer thickness:

& = max(2.0dy,,0.5A,,0.01h)

Bed-load velocity:

’ 0.5
u =1.64( % —1j
J(o. !/ p—1)gd, Torik

0.0032
Csbk = 5 Dpk

TZ

S Bed-load layer

T, 1.7
b

— 1) (Wu and Lin, 2014)
Terik
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Mean Bottom Shear Stress e

« Wave-current bottom friction

!/ /
\/Tb c T z-b wm T 22-b,cz-b,wm COS(D

1

Toum = 27 fU o fl=0.237(A, k)"  (Soulshy, 1997
A, =U,.T,/2¢

« Bottom wave orbital velocity

Uy =
T, sinh(kh)
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Undertow Current and Sediment Transport in Roelvink and Clarkson

UNIVERSITY

Reniers’s (1995) Experiment ,
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Experiment LIP11D 1A conducted in a 233 m long, 5 m wide and 7 m deep wave tank
(Roelvink and Reniers 1995). Dg,=0.22 mm. h=4.1 m, Hy,=0.9 m, and T, =5 s. The bed
friction coefficient c; =0.012. The suspended-load Schmidt number is calibrated as 0.23.
Bed change is not simulated in this case. a uniform cross-shore grid spacing of 1.0 m
and 13 layers in the vertical direction with variable relative thickness (layer thickness
over local flow depth) of 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.06, 0.05, 0.04, 0.03, and
0.02 from the water surface to the bottom
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defy convention
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Longshore Sediment Transport — LSTF case 1

Clarkson
UNIVERSITY

defy convention
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Bed surface elevetation (m)
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LSTF case 1: (a) Significant wave height (with bed profile), (b) Water level, (c)
Longitudinal current, and (d) Longitudinal sediment transport. H=0.228 m, T =1.465 s,
and incident wave angle was 6.5°. Sediment size was 0.15 mm. 16 uniform layers in
vertical.
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Shark River Inlet, USA
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Shark River Inlet, USA
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Shark River Inlet, USA UNTVERSITY

defy convention
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Shark River Inlet, USA UNIVERSITY

defy convention
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Ssummary EaEny

» 3-D shallow water flow model has been developed
for coastal sedimentation.

» A modified mixing length model is used for
turbulence closure.

» The flow model is coupled with CMS-Wave model.

» The model equations are solved with implicit finite-
volume method.

» The sediment transport model considers multiple-
sized, total-load transport.

» The model has been tested using laboratory and
field measurements.
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Comments and
Suggestions?

Thanks!




