

# 3-D Numerical Modeling of Sediment Transport Near Coastal Inlets

Weiming Wu, PhD

James K. Edzwald Endowed Professor Dept. of Civil and Environmental Eng. Clarkson University Potsdam, NY13699, USA

## **3-D Shallow Water Flow Equations**



$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0$$

$$\frac{\partial u}{\partial t} + \frac{\partial (uu)}{\partial x} + \frac{\partial (vu)}{\partial y} + \frac{\partial (wu)}{\partial z} = -\frac{1}{\rho} \frac{\partial p_a}{\partial x} - \frac{1}{\rho} \left( \rho_0 g \frac{\partial \eta}{\partial x} + g \int_z^{\eta} \frac{\partial \rho}{\partial x} dz \right) 
+ \frac{\partial}{\partial z} \left( v_{tH} \frac{\partial u}{\partial x} \right) + \frac{\partial}{\partial v} \left( v_{tH} \frac{\partial u}{\partial v} \right) + \frac{\partial}{\partial z} \left( v_{tV} \frac{\partial u}{\partial z} \right) - \frac{1}{\rho} \frac{\partial S_{xx}}{\partial x} - \frac{1}{\rho} \frac{\partial S_{xy}}{\partial v} + f_c v \right)$$

$$\frac{\partial v}{\partial t} + \frac{\partial (uv)}{\partial x} + \frac{\partial (vv)}{\partial y} + \frac{\partial (wv)}{\partial z} = -\frac{1}{\rho} \frac{\partial p_a}{\partial y} - \frac{1}{\rho} \left( \rho_0 g \frac{\partial \eta}{\partial y} + g \int_z^{\eta} \frac{\partial \rho}{\partial y} dz \right) 
+ \frac{\partial}{\partial x} \left( v_{tH} \frac{\partial v}{\partial x} \right) + \frac{\partial}{\partial y} \left( v_{tH} \frac{\partial v}{\partial y} \right) + \frac{\partial}{\partial z} \left( v_{tV} \frac{\partial v}{\partial z} \right) - \frac{1}{\rho} \frac{\partial S_{yx}}{\partial x} - \frac{1}{\rho} \frac{\partial S_{yy}}{\partial y} - f_c u$$

## **Eddy Viscosity**



**Vertical** 

$$v_{tV} = \sqrt{\left(l_{mV}^2 \left| \overline{S}_V \right|\right)^2 + \left(l_{mH}^2 \left| \overline{S}_H \right|\right)^2}$$

where  $|S_{ij}|$  and  $|S_{ij}|$  are shear strains in vertical and horizontal directions:

$$\left| \overline{S} \right|_{V} = \left[ (\partial u / \partial z)^{2} + (\partial v / \partial z)^{2} \right]^{1/2}$$

$$\left| \overline{S} \right|_{H} = \left[ 2(\partial u / \partial x)^{2} + 2(\partial v / \partial y)^{2} + (\partial u / \partial y + \partial v / \partial x)^{2} \right]^{1/2}$$

 $I_{mV}$  and  $I_{mH}$  are vertical and horizontal mixing lengths:

$$l_{mV} = \kappa z \sqrt{1 - z/h}$$

$$l_{mH} = \kappa \min(l, c_m h)$$

$$l_{mV} = \sqrt{X l_{mc}^2 + (1 - X) l_{mw}^2}$$

$$X = U_c^2 / (U_c^2 + 0.5 U_{wm}^2)$$

where z is the vertical coordinate above the bed, / is the horizontal distance to the nearest solid wall, and h is the flow depth.

$$v_{tH} = v_{tV} + c_{wf}U_{wm}H + c_{br}h\left(\frac{D_{br}}{\rho}\right)^{1/3}$$

## **Boundary Conditions**



#### Free surface kinematic condition

$$\frac{\partial \eta}{\partial t} + u_h \frac{\partial \eta}{\partial x} + v_h \frac{\partial \eta}{\partial y} = w_h$$

#### Surface shear stress due to wind

$$\tau_{si} = \rho_a C_D W W_i$$

where  $\rho_a$  is air density,  $C_D$  is the wind drag coefficient, and W is the wind velocity. The drag coefficient is calculated using the formula of Hsu (1988) and modified for high wind speeds based on field data by Powell et al. (2003).

#### **Bed shear stress**

$$\tau_{bx} = \rho c_f u_b \sqrt{u_b^2 + v_b^2 + 0.5U_{wm}^2}, \quad \tau_{by} = \rho c_f v_b \sqrt{u_b^2 + v_b^2 + 0.5U_{wm}^2}$$

where  $u_b$  and  $v_b$  are the x- and y-velocities near the bed;  $c_f$  is the bed friction coefficient; and  $U_{wm}$  is the maximum orbital bottom velocity of wave.

$$c_f = \left[ \frac{\kappa}{\ln\left(30z_P / k_s\right)} \right]^2$$

#### **CMS-Wave**



Spectral wave-action balance equation (Mase, 2001)

$$\frac{\P(c_{x}N)}{\P x} + \frac{\P(c_{y}N)}{\P y} + \frac{\P(c_{\theta}N)}{\P \theta} = \frac{K}{2\sigma} \underbrace{\stackrel{\text{\'e}}{\R}}_{\mathbb{R}} \underbrace{\stackrel{\text{\'e}}{\R}}_{\mathbb{R}} cc_{g} \cos^{2} \theta \frac{\P N \frac{\ddot{0}}{\frac{1}{2}}}{\P y \frac{\ddot{0}}{\mathbb{R}}} \underbrace{\frac{cc_{g}}{2} \cos^{2} \theta \frac{\P^{2}N \mathring{u}}{\P y^{2} \mathring{u}}}_{\mathbb{R}} \varepsilon_{b}N - S$$

$$N = \frac{E(f,\theta)}{\sigma}$$

Characteristic velocities

$$\begin{split} c_x &= c_g \cos \theta + U_x & c_y &= c_g \sin \theta + U_y \\ c_\theta &= \frac{\sigma}{\sinh 2kh} \mathop{\varepsilon}^{\underbrace{\alpha}} \sin \theta \frac{\P h}{\P x} - \cos \theta \frac{\P h}{\P y} \dot{\bar{\theta}}^{\underline{\dot{\alpha}}} + \cos \theta \mathop{\varepsilon}^{\underbrace{\alpha}} \sin \theta \frac{\P U_x}{\P x} - \cos \theta \frac{\P U_x}{\P y} \dot{\bar{\theta}}^{\underline{\dot{\alpha}}} + \sin \theta \mathop{\varepsilon}^{\underbrace{\alpha}} \sin \theta \frac{\P U_y}{\P x} - \cos \theta \frac{\P U_y}{\P y} \dot{\bar{\theta}}^{\underline{\dot{\alpha}}} \end{split}$$

Dispersion relation

$$\sigma^2 = gk \tanh(kh) \qquad \qquad \sigma = \omega - k^T \times U$$

#### **Wave Radiation Stress**



#### Formula of Mellor (2008)

$$S_{ij} = \int_0^\infty \int_{-\pi}^{\pi} \left\{ k(f)E(f,\theta) \left[ \frac{k_i(f)k_j(f)}{k(f)^2} \frac{\cosh^2 k(h+z')}{\sinh kD \cosh kD} - \delta_{ij} \frac{\sinh^2 k(h+z')}{\sinh kD \cosh kD} \right] + \delta_{ij} E_D(f,\theta) \right\} d\theta df$$

where E is the wave energy, k is the wave number,  $\theta$  is the angle of wave propagation to the onshore direction, f is the wave frequency, h is the still water depth, D is the total water depth, z is the vertical coordinate referred to the still water level, and  $E_D$  is a modified Dirac delta function which is 0 if  $z\neq\eta$  and has the following quantity:

$$\int_{-h}^{\eta+} E_D dz = E/2$$

#### **Surface Roller**



- As wave breaks, part of the energy goes into the aerated region known as surface roller as momentum and later transferred to the flow below.
- Roller energy balance (Stive and de Vriend, 1994)

$$\frac{\partial (2E_{sr}c_j)}{\partial x_i} = -D_{sr} + f_e D_{br}$$

 $E_{sr} \rightarrow \text{Rolle energy density}$ 

 $D_{br} \rightarrow$  Wave breaking dissipation

 $D_{sr} \rightarrow$  Surface roller dissipation

 $f_e \rightarrow \text{Efficiency factor}$ 

- Assumptions
  - Roller direction in same direction as waves
- Roller dissipation

$$D_{sr} = \frac{g2E_{sr}\beta_D}{c}$$

 $D_{sr} = \frac{g'2E_{sr}\beta_D}{g} \qquad \beta_D \to \text{Roller dissipation coefficient}$ 

Roller stress

$$R_{ij} = 2E_{sr}R_z w_i w_j$$

$$R_z = 1 - \tanh \left[ \frac{2(z - \eta)}{H_z} \right]^4$$
 (Warner et al., 2008)

## 3D Mesh System







Quadtree rectangular in horizontal, and  $\sigma$  coordinate in vertical

## **Galveston Entrance Channel, TX**





## **Numerical Solution Methods**



- Finite volume method;
- Fully implicit;
- Non-staggered (collocated) grid;
- SIMPLEC, with under-relaxation;
- Rhie and Chow's (1983) momentum interpolation for interface fluxes;
- Upwind schemes:
  - Hybrid, Exponential, HLPA
- Solvers:
  - GMRES
- Drying and wetting: "Freezing" dry nodes.

## **3-D Sediment Transport Model**



#### **Suspended Load Transport**

$$\frac{\partial c_k}{\partial t} + \frac{\partial \left[ \left( u_j - \omega_{s,k} \delta_{j3} \right) c_k \right]}{\partial x_j} = \frac{\partial}{\partial x_j} \left( \frac{\mathbf{v}_t}{\mathbf{\sigma}_c} \frac{\partial c_k}{\partial x_j} \right)$$

#### **Bed Load Transport**

$$(k=1, 2, ..., N)$$

$$\frac{\partial \left(q_{bk}/u_{bk}\right)}{\partial t} + \frac{\partial \left(\alpha_{bxk}q_{bk}\right)}{\partial x} + \frac{\partial \left(\alpha_{byk}q_{bk}\right)}{\partial y} + \frac{1}{L}\left(q_{bk} - q_{b*k}\right) = 0$$

#### **Bed Change**

$$(1-p'_m)\frac{\partial z_{bk}}{\partial t} = D_{bk} - E_{bk} + \frac{1}{L}(q_{bk} - q_{b*k})$$

#### **Bed Material Mixing**

$$\frac{\partial(\delta_{m}p_{bk})}{\partial t} = \frac{\partial z_{bk}}{\partial t} + p_{bk}^{*} \left( \frac{\partial \delta_{m}}{\partial t} - \frac{\partial z_{b}}{\partial t} \right)$$

## Wu et al. (2000) Bed Load Formula





Extended to Coastal Sedimentation by Wu and Lin (2014, Coastal Engineering)

## **Near-Bed Suspended-load Concentration**



Near-bed suspended-load concentration is related to bed-load transport rate:

$$c_{*bk} = \frac{q_{*bk}}{\delta u_{bk}}$$

Bed-load layer thickness:

$$\delta = \max(2.0d_{50}, 0.5\Delta_r, 0.01h)$$

Bed-load velocity:

$$\frac{u_{bk}}{\sqrt{(\rho_s / \rho - 1)gd_k}} = 1.64 \left(\frac{\tau_b'}{\tau_{cri,k}} - 1\right)^{0.5}$$



$$c_{*bk} = \frac{0.0032}{\delta} p_{bk} d_k \left( \frac{{\tau'}_b}{\tau_{cri,k}} - 1 \right)^{1.7}$$

(Wu and Lin, 2014)

#### **Mean Bottom Shear Stress**



Wave-current bottom friction

$$\tau_b' = \sqrt{\tau_{b,c}'^2 + \tau_{b,wm}'^2 + 2\tau_{b,c}'\tau_{b,wm}'\cos\varphi}$$

$$\tau'_{b,wm} = \frac{1}{4} \rho f'_w U_{wm}^2 \qquad f'_w = 0.237 (A_w / k'_s)^{-0.52} \qquad \text{(Soulsby, 1997)}$$

$$A_{w} = U_{wm}T_{w} / 2\pi$$

Bottom wave orbital velocity

$$U_{wm} = \frac{\pi H_s}{T_p \sinh(kh)}$$

#### **Undertow Current and Sediment Transport in Roelvink and** Reniers's (1995) Experiment





Experiment LIP11D 1A conducted in a 233 m long, 5 m wide and 7 m deep wave tank (Roelvink and Reniers 1995).  $D_{50}=0.22$  mm. h=4.1 m,  $H_{s0}=0.9$  m, and  $T_p=5$  s. The bed friction coefficient  $c_f = 0.012$ . The suspended-load Schmidt number is calibrated as 0.23. Bed change is not simulated in this case. a uniform cross-shore grid spacing of 1.0 m and 13 layers in the vertical direction with variable relative thickness (layer thickness 0.02 from the water surface to the bottom





#### **Longshore Sediment Transport – LSTF case 1**





LSTF case 1: (a) Significant wave height (with bed profile), (b) Water level, (c) Longitudinal current, and (d) Longitudinal sediment transport.  $H_s$ =0.228 m,  $T_p$ =1.465 s, and incident wave angle was 6.5°. Sediment size was 0.15 mm. 16 uniform layers in vertical.



















## **Summary**



- ➤ 3-D shallow water flow model has been developed for coastal sedimentation.
- ➤ A modified mixing length model is used for turbulence closure.
- **➤** The flow model is coupled with CMS-Wave model.
- ➤ The model equations are solved with implicit finite-volume method.
- ➤ The sediment transport model considers multiplesized, total-load transport.
- ➤ The model has been tested using laboratory and field measurements.



## Comments and Suggestions?

Thanks!