By (WSP) Mathieu Roy Benoit Ruest Vincent Métivier Nicolas Guillemette Steve Renaud

and

(PWGSC) Alain Drouin

BREAKWATER RECONSTRUCTION AT CAP-DES-ROSIERS HARBOR

PRESENTATION OUTLINE

- Site Description
 - Existing conditions
 - Proposed concept
 - Available data
- Design Wave Height Modeling
- Wave Agitation Assessment
- Sediment Transport Assessment
- Conclusions and lessons learned

Storm January 7th 1983

SITE DESCRIPTION

— Since 1980, repair works on the road or locally within the harbor were required every ~2 years

Canada

Storm December 6th 2010

Public Works and Government Services Canada

wsp

- Sea level rise :
 - +1mm/yr felt at the nearest water level station

- Reduction in ice cover
 - Winter storms can now generate high waves that will reach the shoreline

Prior 2014 - Vertical wall

After 2014 - Rock revetment

Public Works and Government Services Canada

Existing Conditions (2016)

-

Canada

— Typical boat

- 3-4 m width
- 8 m length
- 1-1,5 m draught

— Navigation (Harbor Entrance)

- North-North-East oriented entrance sheltered by lighthouse rocky cliff
- South-West approach not possible due to multiple rock outcrops
- East approach → exposition to large fetch and waves
- Wave breaking at the entrance at low tide

— Wave Agitation

 Wave reflection inside the entrance within the berlin wall and along the main navigation channel

Existing Conditions

Proposed concept

- Key Features of Proposed Concept
 - Berlin walls replaced by breakwaters (Reduce agitation)

— Channel entrance width increased by 0,8 m (Navigation maneuvrability)

— Minimum channel width increased by 3,1 m (Navigation maneuvrability)

— Inner basin adjacent to southern breakwater to dissipate wave energy before it reaches the other end of the harbor (Reduce agitation & sedimentation)

Public Works and Government Services Canada

11

- Step 1:
 - Generation of a synthetic buoy offshore (deepwater) using local wind data

- Use of wave hindcast model validated in Great Lakes and in Gulf of St-Lawrence
- Hs max ~ 7,5 m
- Dominant offshore wave direction = NE

- Step 2 :
 - Nearshore wave propagation using SWAN for hundreds of wave conditions (Hs, Tp, Dir) and water levels

 Result extraction in zones adjacent to toe of proposed structures

- Step 3 :
 - Model result organized in solution space (multidimensional matrix)
 - 4D linear interpolation using solution space, offshore wave and water level timeseries
 - Final result :
 - Hourly nearshore wave climate

Canada

Wave agitation Assessment

- Steps 1-2-3 :
 - Wave propagation inside the harbor using CGWAVE
 - Solution space and wave timeseries for each mesh calculation nodes inside the harbor
 - Production of wave agitation chart for different probabilities

2.25

____ 2.10

_____1.95

_ 1.80 _ 1.65

1.50

_ 1.35

1.20

1.05 0.90

0.75

0.60

0.45

0.30

_ 0.15 0.00

Wave agitation Assessment

- Steps 1-2-3 :
 - Wave propagation inside the harbor using CGWAVE
 - Solution space and wave timeseries for each mesh calculation nodes inside the harbor
 - Production of wave agitation chart for different probabilities

Sediment Transport Assessment

- Grain-size Classification
 - Sediment distribution indicates two transport mechanisms
 - -Sediment supply contribution from the Whalen River during flood
 - -Contribution from the longitudinal drift during storms

	SAMPLINGS		
	INNER HARBOR	MAIN CHANNEL	ENTRANCE
Gravel	5.8%	0.0%	3.1%
Coarse sand	37.7%	12.2%	79.4%
Fine sand	2.9%	64.8%	13.0%
Silt and clay	64.0%	23.0%	4.5%

Sediment Transport Assessment

 Contribution from longitudinal drift

Public Works and Government Services Canada

Northeastern storm, Hs ~= 4 m, Tp ~ = 9 s, Duration approx 24 hours

Silt Simulations

Sediment Transport Assessment

- Contribution from Whalen River
 - PSed (Lagrangian particle-based sediment transport model)
 - Hydrodynamics generated in Telemac-2d for multiple tidal cycle and including salinity gradient effects
 - —Silt simulations show less accumulation in inner harbor in future conditions due to enhancement of the 90 deg bend

Fine Sand Simulations

Sediment Transport Assessment

- Contribution from Whalen River
 - PSed (Lagrangian particle-based sediment transport model)
 - Hydrodynamics generated in Telemac-2d for multiple tidal cycle and including salinity gradient effects
 - -Silt simulations show less accumulation in inner harbor in future conditions due to enhancement of the 90 deg bend
 - Fine sand simulations show loss of flushing capacity in future conditions due to widening of the main channel for navigation safety purposes

Public Works and Government Services Canada

21

Lessons Learned

- Storm December 30th
 2016
- Huge storm, lots of damage
- Maximum water level since 1969 in between two hours
- Importance of verifying high temporal resolution water level data when available!

0.0

— (1min to 6 min dataset)

2017-01-0

22

CONCLUSIONS

- Different modeling strategies and simulation results allowed to :
 - Provide key design parameters
 - -extreme water levels, wave heights and preliminary calculation for rock sizing
 - -future wave agitation conditions to assess navigation conditions
 - -Understand sediment transport mechanisms in future conditions
 - Provide guidelines to support the decision-making process and future harbor design
 - Gain confidence in the proposed reconstruction option

Thanks!

Public Works and Government Services Canada

\\SD

wsp.com