

36TH INTERNATIONAL CONFERENCE ON COASTAL ENGINEERING 2018

Baltimore, Maryland | July 30 – August 3, 2018

The State of the Art and Science of Coastal Engineering

Rapid Coastal Adaptation Assessment City of Annapolis

Don M. Bain, P.E.

SumSmart LLC

Thomas Laczo Stacey Underwood, P.E. Michael Dowling, R.A. David Kriebel, Ph.D., P.E.

City of Annapolis

City of Annapolis

JCCE

Seawater in the Streets 40+ days / year

Ice Cream Factory

JCCE

Stakeholder Engagement

ICCE

29 Organizations, 175+ Public events, 4,000+ Person-encounters

Expectations

www.usps.com

JCCE

2018

What are you/we going to do about it?

Planning Response

Rapid Coastal Adaptation Assessment

5 Steps

1. Team

- 2. Characterize the coast
- 3. Catalog adaptation measures
- 4. Develop cost models

5. Apply

Step 1: Team

Engineers and architects

- City planning team
- U. S. Army Corps of Engineers
- U. S. Naval Academy

Step 2: Assess Shoreline

106,500 feet or 20.2 miles of shoreline

Step 3: Catalog Adaptation Measures

What works?

- Levees
- Floodwalls
- Bulkheads
- Stone sills with living shorelines
- Raise streets
- Raise public infrastructure

Step 4: Develop Parameterized Cost Models

Successful adaptation

- Assumptions
- U.S. Army Corps of Engineers data
- Data from other jurisdictions

Express costs by parameters

- \$ per linear foot
- \$ per square yard

Adaptation Toolkit

Adaptation Alternatives

Floodwall, H-pile, 4 feet Levee Embankment, 4 feet Levee Embankment, 6 feet Stone Sill, Living Shorelines Timber Bulkhead, 4 feet, wood face Timber Bulkhead, 4 feet, vinyl face Raise Roadway, 2 feet H, 30 feet W Raise Parking Lot, 2 feet, Asphalt Raise Parking Lot, 4 feet, Asphalt

City Dock, Raise Seawall + Promenade, 2 ft City Dock, Raise Seawall + Promenade, 4 ft City Dock, New T-wall, 2 ft H City Dock, New T-wall, 4 ft H

CCE

2018

Step 5: Apply the Toolkit (example)

ICCE

2018

Raise 30 foot wide street by 2 feet 2,850 feet at \$875 / linear foot ~ \$ 2.5 million

Step 5: Apply the Toolkit (example)

50,207 feet existing bulkhead Bulkhead 4 foot above MHW ~ \$ 1,400 per linear foot ~ \$ 70 million

What did we learn?

#1 Context

#2 Properly Frame the Problem

- Not an engineering problem

Economic Development

#3 No Clear Organizational Home

Public Works Emergency Management Building Codes Planning and Zoning Historical Preservation Economic Development Sustainability Resilience Finance Legal **Elected Officials**

#4 Knowledge Gaps

2018

On-line Training Curriculum

Tools & Data NOAA
FEMA
U.S. Army Corps

CCE

2018

1% Annual Chance Flood + NOAA 2017 SLR Scenarios Annapolis, Maryland

Sea Level Rise Planning: Technical Principles & Practice

- limited number
- end users

For More Information

sacem Birts

Ice Cream Factor

H

Don.Bain@SumSmart.com

DOCK STREET

MISSION BBQ

STEVENS

Special Thanks Lisa Craig Michael Dowling David Kriebel Thomas Laczo Raymond Tracy Stacey Underwood

Photo by Joshua McKerrow, Annapolis Capital Gazette

ICCE

2018