

36TH INTERNATIONAL CONFERENCE ON COASTAL ENGINEERING 2018

Baltimore, Maryland | July 30 – August 3, 2018

COMPREHENSIVE STUDY AND MONITORING PROGRAM FOR BEACHES AT VIÑA DEL MAR CHILE

August 3rd 2018	Benjamín Carrión, Msc, Coastal Modeller
	Rolando García, Msc, Project Leader
	Tomás Cuevas, Project Engineer

PRDW – <u>bcarrion@prdw.com</u> PRDW – <u>rgarcia@prdw.com</u>

PRDW – <u>tcuevas@prdw.com</u>

- 1. Context and motivation
- 2. Objectives
- 3. Studies and main results
 - Hydrological study
 - Field measurements
 - Spectral wave propagation
 - Hydrodynamic modelling
 - Long-shore transport
 - Cross-shore erosion
- 4. Main findings
- 5. Conclusions

1. Context and motivation

- 2. Objectives
- 3. Studies and main results
 - Hydrological study
 - Field measurements
 - Spectral wave propagation
 - Hydrodynamic modelling
 - Long-shore transport
 - Cross-shore erosion
- 4. Main findings
- 5. Conclusions

JCCE 2018

- Anecdotal fears of erosion
- Unclear current state or causes
 - Sediment deficit?
 - Sediment properties change?
 - Change in wave conditions?
 - Built environment?

Miramar beach, Viña del Mar ~1930 - ~2010

- Anecdotal fears of erosion
- Unclear current state or causes
 - Sediment deficit?
 - Sediment properties change?
 - Change in wave conditions?
 - Built environment?
- Permanent changes?

JCCE

1. CONTEXT AND MOTIVATION

August 2015 storm

JCCE 2018

• 2015 storm impact

- Huge erosion
- Infrastructure loses

• Temporary changes

- Seasonal wave variability
- Seasonal beach profiles
- Permanent change?
- Recovery times?

El Sol beach, Viña del Mar Agosto 2015 **JCCE**

1. Context and motivation

2. Objectives

- 3. Studies and main results
 - Hydrological study
 - Field measurements
 - Spectral wave propagation
 - Hydrodynamic modelling
 - Long-shore transport
 - Cross-shore erosion
- 4. Main findings
- 5. Conclusions

2. OBJECTIVES

- MOP (Ministry of Publics Works) asked PRDW for a comprehensive study
- General objectives:
 - Improve the knowledge on the morphological behavior of the Viña del Mar beaches
- Specific objectives:
 - Estimate storm expected impacts
 - Estimate recovery times after storms
 - Determine the state of the beaches:
 - Structural erosion?
 - Eventual erosion?
 - Main drivers or causes?

- 1. Context and motivation
- 2. Objectives
- 3. Studies and main results
 - Hydrological study
 - Field measurements
 - Spectral wave propagation
 - Hydrodynamic modelling
 - Long-shore transport
 - Cross-shore erosion
- 4. Main findings
- 5. Conclusions

• Sediment discharge

Basin	Mean yearly bed load transport [m³/year]
Estero Marga-Marga	22,354
Estero Reñaca	2,914
Others	< 10%
Total	27,982

C

• Beach monitoring

Date	Observation
2017-06-09	Pre storm
2017-06-20	Post storm 1
2017-06-29	Post storm 2
2017-07-31	Recovery month 1
2017-08-29	Recovery month 2
2017-10-03	Recovery month 3
2017-10-31	Recovery month 4

- Fully spectral, every sea state
- NCEP deep water recreated spectra
- Local seas generated by 2D wind field
- Deep water model:
 - Unsteady
 - Calibrated against deep water buoy

JCCE

3. STUDIES Spectral wave model

- Local model
 - fed by deep water model results
 - steady state
 - calibrated against ADCP data
- Main results
 - Local wave climate
 - Input for other models

JCCE

- Currents mainly induced by wave breaking
 - Tide and wind have minor effects
- Average current are weak

Average current conditions

- Currents mainly induced by wave breaking
 - Tide and wind have minor effects
- Average current are weak
- Mean wave induced currents mostly
 northwards

- Currents mainly induced by wave breaking
 - Tide and wind have minor effects
- Average current are weak •
- Mean wave induced currents mostly ٠ northwards
- Winter storm condition: mixed directions, ۲ mostly southward

Typical winter storm: Hm0 = 5.0 m, Tp = 14s

- Currents mainly induced by wave breaking
 - Tide and wind have minor effects
- Average current are weak
- Mean wave induced currents mostly
 northwards
- Winter storm condition: mixed directions, mostly southward
- 2015 storm: large currents, all southward

ICCE

Basin	Mean yearly bed load transport [m ³ /year]
Estero Marga-Marga	22,354
Estero Reñaca	2,914
Others	< 10%
Total	27,982

- Net transport close to zero
- Gross transport increases northward

JCCE 2018

Mean yearly longshore transport

• **CShore** profile erosion – **XBeach** erosion/deposition patterns

JCCE

Beach monitoring – coastline position

1CCE 2018 ۲

ICCE 2018

Beach monitoring – coastline position

- Two groups of beaches
 - Confined/pockets beaches

Berm volume slowly increases after storms

- Coastlines reacts to storms
 - Retreat

Longer, tilting beaches

Retreat and tilt

- 1. Context and motivation
- 2. Objectives
- 3. Studies and main results
 - Hydrological study
 - Field measurements
 - Spectral wave propagation
 - Hydrodynamic modelling
 - Long-shore transport
 - Cross-shore erosion
- 4. Main findings
- 5. Conclusions

_____2017-03-00

_____2017-06-09

_____2017-06-20

_____2017-06-29

JCCE

- Northward transport
 - Small rates
 - Rather constant through the year
 - Associated to mean wave conditions
- Southward transport
 - Larger rates
 - Eventual
 - Associated to storm waves
- ~Relatively balanced
- Beaches are mostly closed systems
- Debilitation of circulation might explain 2015 unusual erosion

• Wave conditions rather constant in time

Figura 3-11: serie de altura de oleaje H_{mo} media mensual frente a Av. Perú.

Figura 3-13: serie de dirección media de oleaje D_m media mensual frente a Av. Perú.

• Wave conditions rather constant in time

Figura 3-16: máximas alturas de oleaje por año frente a Av. Perú.

Figura 3-18: serie de tiempo del número de eventos extremos por año.

- So far, we have observed:
 - Average current field near zero
 - Each beach as closed system
 - Expected sediment supply consistent to longshore transport capacity
 - No long-term trends in wave forcing
 - (2018 beaches are fully recovered from 2015 event)

\rightarrow No structural erosion

JCCE

4. MAIN FINDINGS Long-term trend

Sediment supply from Marga Marga

Estimated sand supply from Marga Marga

- 1. Context and motivation
- 2. Objectives
- 3. Studies and main results
 - Hydrological study
 - Field measurements
 - Spectral wave propagation
 - Hydrodynamic modelling
 - Long-shore transport
 - Cross-shore erosion
- 4. Main findings
- 5. Conclusions

5. CONCLUSIONS

- Current are mostly wave-driven
 - Low persistent northward currents under normal conditions
 - Storms induce larger southward currents
 - Same trend for longshore transport
- Circulation cells are observed
 - Beaches are closed systems
- Cross-shore processes are dominant
 - Storm erosion moves sediment into offshore shallow water
 - Beach recovery occurs at longer time scales
- No structural erosion is observed
- Wave conditions don't show a long-term rend
- Lack of sediment likely due to low discharges
 - Anthropogenic causes should be further investigated
 - Might imply future problems in longer time scales

36TH INTERNATIONAL CONFERENCE ON COASTAL ENGINEERING 2018

Baltimore, Maryland | July 30 – August 3, 2018

COMPREHENSIVE STUDY AND MONITORING PROGRAM FOR BEACHES AT VIÑA DEL MAR CHILE

August 3rd 2018	Benjamín Carrión, Msc, Coastal Modeller
	Rolando García, Msc, Project Leader
	Tomás Cuevas, Project Engineer

PRDW – <u>bcarrion@prdw.com</u> PRDW – <u>rgarcia@prdw.com</u>

PRDW – <u>tcuevas@prdw.com</u>

