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Objectives

- Modelling the influence of mooring systems on the motion of breakwaters
- Complex FSI including flexible structures

- CFD
- Accurate wave modelling
- Non-linear wave-structure interaction
- Viscous effects around the body

- Implementation of 6DOF algorithm
- Implementation of mooring system



—EF3D: Open Source CFD Solver

Developed at the Marine Civil Engineering Group, Department of Civil and Transport
Engineering, NTNU Trondheim, Norway
3D numerical wave tank

- Free Surface Flows

- Wave Hydrodynamics

- Wave Forces

- Fluid-Structure Interaction

MPI parallelized C++ code
Published under GNU GPL v3




Governing Equations

- Incompressible RANS and continuity equations in non-conservative form
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- Level-Set Method for capturing the free surface
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- Reinitialisation after each step to keep ® a signed distance function



Numerical Discretisation

- Finite Difference Method on Cartesian grid
- Convection terms: 5th-order accurate WENO scheme
- Non-oscillatory behaviour near large gradients
- Keeps high-order accuracy in comparison to TVD schemes
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- Diffusion terms: Implicit discretisation for stability and efficiency reasons
- Temporal terms in momentum equation: 3rd-order TVD Runge-Kutta scheme
- Adaptive time steps based on CFL criterion



Fluid Solution Algorithm

- Staggered grid
- Tight velocity-pressure coupling
- Avoiding parasitic currents above the free surface

- Chorin’s projection method for incompressible flows
- Poisson equation for pressure
- Velocity satisfies continuity equation after correction

- Implicit boundary treatment
- Ghost cell immersed boundary method
- Extrapolation of solution in solid regions
- High stability through numerical simplicity

GC
{ { ©)

{ { lL‘—XD GC

lllustration of GC-IBM




6DOF Algorithm

- Geometry described by triangular mesh
- Implicit description of rigid bodies
- Ray-tracing algorithm for closest distance information
- Signed distance function around body using
reinitialisation algorithm
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- Advantages:
- No moving or overset meshes
- High numerical stability
- Fast and parallelised process

Contour of level set function

around moving body /



6DOF Algorithm: Rigid Body Dynamics

- Body moves as rigid body in 6DOF @ 1
- Translational motion from Newton’s law 22 o
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- System is solved explicitly using an AB-scheme



6DOF Algorithm: Coupling

- Weak coupling without sub-iterations
- Ghost cell immersed boundary method
- Interface velocity from body dynamics

- Interpolation of staggered velocity components
- Pressure gradient from velocities
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- Preventing pressure oscillations during solid/fluid change
- Extrapolation of fluid values to solid region
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Quasi-Static Mooring Model

- Analytical models lack flexibility for general application
- Simple numerical model in order to keep efficiency

- Quasi-static motion

- Explicit coupling as additional forces and moments

- Tension Element Method
- Neglecting bending stiffness
- Elastic material
- Discretisation in mass points
- Here: just gravity forces




Quasi-Static Mooring Model

- Static force equilibrium at each point
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- System of equations is solved for unit normal vectors of bars
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- Bar lengths a as function of stiffness
- System solved using successive approximation



2D

Decay lests

- Single motion calculations
- (Good convergence to experimental data
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2D Breakwater Motion in Waves

- Experiments from Ren et al., 2015, Applied Ocean Research
- 2D barge:

- p = 500 kg/m3

- h=02m <

- 1=03m k

- Incoming waves: & i
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Breakwater Motion

IN Waves
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2D Moored Breakwater Motion in Waves

- Comparison of free-floating barge with moored-floating barge
- Mooring system of two mooring lines
- Two different line configurations with different specific weight

Colours shows u, in the fluid and tension forces in the lines
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2D Moored Breakwater Motion in Waves

- Comparison of the three motions of freedom
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2D Moored Breakwater Motion in Waves

Influence of different mooring systems on heave motion in waves of different wave lengths
- Decreasing amplitude irrespective to weight
- Changing frequency near eigenfrequency
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2D Moored Breakwater Motion in Waves

Influence of different mooring systems on pitch motion in waves of different wave lengths
- Changing amplitudes over wave length
- Changing frequencies at small wave lengths
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Conclusion

- 6DOF Algorithm
- Based on ghost cell immersed boundary method
- Weakly coupled algorithm shows good convergence

- Mooring model
- Coupled to 6DOF algorithm through forces
- Quasi-static algorithm for efficient calculations
- Suitable for slack and tensed configurations

- Mooring systems influence all motions of the breakwater in both amplitude and frequency
- Surge: Weight decreases the motion
- Heave: Amplitude of motion mainly depends on the angle at the mooring point
- Pitch: Weight can significantly influence the behaviour at different wave lengths



