HIGHLY RESOLVED DIRECTIONAL PROPERTIES OF WIND WAVES AND SWELL WITH VARIOUS SCALES

2018/7/30@Baltimore, Maryland

Takashi FUJIKI

Koji KAWAGUCHI

Fumikazu SUEHIRO

Noriaki HASHIMOTO

Contents

- Aim of wave observation and its applications in Japan
- Estimation of directional spectrum with Bayesian inversion
- Results:
 - -Agreement with 3/2 power of law for wind waves
 - -Relationship between Non-dimensional wave statics and directional spreading
- Discussions and conclusions
- Future works

Wave Observation by MLIT

- Observation plan designed by MLIT
 (<u>M</u>inistry of <u>L</u>and, <u>I</u>nfrastructure and <u>T</u>ourism)
- Started with pressure gauges in 70's

Two major type instruments at present
 Buoy type: GPS sensor on mooring buoy
 bottom installed type: Wave-ADCP, USW, pressure gauge

GPS-buoy

Wave-ADCP

Aim of Wave Observation and Its Applications in Japan

Wave statics(height, period, direction) in various scales are used for coastal design, coastal operation, etc.

- High sea (wave height > 8m) -> Sampling of reference data for design use
- Moderate sea (wave height < 1m) -> Monitoring of tranquility for marine activities
- All time(from low to high) -> validation of model prediction using wave forcing,
 e.g., shoreline change, wave climate, etc.
- -> These aims requests instruments for moderate sea to high sea

Observation from Moderate Sea to High Sea

- Bottom installed type is desirable for its high durability to high sea state
 - <- wave staff on sea surface can be troubled easily by high waves
- Array instruments is required for directional information
 - <- directional info is obtained through directional spectrum

Wave-ADCP meets these requests

- •function:
 - -vertical ultra sonic wave -> surface displacement
 - -along beam back scattering -> current profile
- Array observation with single instrument

Wave-ADCP

Inversion of Directional Spectrum

$$d = G \cdot m$$

d : ovservational data vector(phase difference)

G: model matrix(transfer function)

m: directional spectrum

Simple solution by Least Square Method:

$$\boldsymbol{m}^* = \boldsymbol{G}^{-1} \cdot \boldsymbol{d}$$

Problems in simple inversion method

- •Low resolution due to G, which is transfer function of Doppler velocity
- Observational noise in d make estimator unstable
- Increasing size of d give Collinearity

Ill-Posed problem

Bayesian Inversion of Directional Spectrum

- Bayesian Inversion enables smoothing based on prior berief
- Introduction of smoothing by Bayesian inference (Hashimoto, 1987)
 -smoothing by minimizing second difference on directional spectrum

Hyper parameter \underline{u} , which controls contribution of prior distribution, is determined by ABIC(\underline{A} kaike \underline{B} ayesian \underline{I} nformation \underline{C} riteria) $\underline{automatically}$

$$R(\mathbf{m}) = |\mathbf{d} - \mathbf{G} \cdot \mathbf{m}|^2 + \underline{u^2 |\mathbf{L} \cdot \mathbf{m}|^2} > min$$
penalty term for smoothing(varying with u)

 $u \rightarrow 0$: solution by Least Square Method

 $u \rightarrow \infty$: uniform directional spectrum(NO contribution of observed data)

Partitioning and Identification of Several Wave Systems

- Observed directional spectrum can show several peaks
 -Detailed analysis for each peaks is required
- •WITS(<u>W</u>ave <u>I</u>dentification and <u>T</u>racking <u>S</u>ystem) by Hanson et al. 2001
 - -peak detection by **Water Shedding Algorithm**-merging several peaks close to each other
 -rejecting apparent peaks with small energy

- calculate wave statics for each peaks-height, period, direction
- Identification for windsea and swell by inverse wave age, $|U_{10}\cos\delta|/C_p$
- U_{10} : 10m-above local wind(m/s)
- δ : Directional difference between wave and wave(rad)
- C_p : Phase speed at spectral peak(m/s)

Data Processing

• site:

Akita (Japan sea, windsea is dominant in winter)
Hachinohe (Pacific ocean, swell is dominant in summer)

- analysis method: directional spectrum by Bayesian inversion
- criteria to reject marginal data for detailed analysis:

```
H_{m0}(m): 0.5 \sim 6.0
```

$$T_p(s): 4.0 \sim$$

reject counter swell

 $|D_{wind} - D_{wave}|$ (deg): < 45.

reject transient wave

$$\Delta U_{10}$$
 (m/s) : < 5.0

$$\Delta D_{wave}$$
 (deg): < 30.

$$\Delta D_{wind}$$
 (deg) : < 30 .

separating windsea and swell

Windsea: $U_{10}/C_p(-)$: **1.0** ~

Swell: $U_{10}/C_p(-)$: **0.1 ~ 0.5**

Summary of samples

wind sea(<u>50</u>/26280)

 $H_{m0}(m): 0.62 \sim 5.21$

 $T_p(s): 4.4 \sim 11.5$

 $U_{10}/C_p(-)$: 0.93 ~ 1.69

swell sea(<u>53</u>/26280)

 $H_{m0}(m): 0.50 \sim 4.18$

 $T_p(s) : 5.8 \sim 15.8$

 $U_{10}/C_p(-)$: 0.16 ~ 0.50

Results: validation on Power Law

- The 3/2 power of law for wind wave
 - Non-dimensional wave height and period

$$H^* \sim T^{*3/2}$$

$$H^* = gH_{m0}/|U_{10}\cos\delta|^2$$
$$T^* = gT_p/|U_{10}\cos\delta|$$

 U_{10} : 10m-above local wind(m/s)

 δ : Directional difference between wave and wave(rad)

- Validation with samples with various scales, including moderate sea to high sea
- Does swell also conform the 3/2 power of law?

Suzuki(2011)

Fig.5 The relation between non dimensional wave height H^* and period T^* . The 3/2 power law (Toba, 1972) is plotted as a thin line.

Results: Validation for 3/2 Power of Law

Relationship between
 Non-dimensional wave height and period

- Windsea shows
 - good agreement with $H^* \sim T^{*3/2}$
- Swell shows unclear relationship
 - scattered around $H^* \sim T^{*2}$?

Results: Wave Steepness and Directional Spreading

 $m_1(f) = \sqrt{a_1(f)^2 + b_1(f)^2}, \ a_1(f) = \int \cos(\theta) G(\theta | f) d\theta, \ b_1(f) = \int \sin(\theta) G(\theta | f) d\theta$

Results: Wave Steepness and Directional Spreading

 $m_1(f) = \sqrt{a_1(f)^2 + b_1(f)^2}, \ a_1(f) = \int \cos(\theta) G(\theta | f) d\theta, \ b_1(f) = \int \sin(\theta) G(\theta | f) d\theta$

Results: Wave Steepness and Directional Spreading

 $\sigma_{\theta}(f)$: circular root mean square spreading, $\sigma_{\theta}(f) = \sqrt{2(1 - m_1(f))}$ $m_1(f) = \sqrt{a_1(f)^2 + b_1(f)^2}$, $a_1(f) = \int cos(\theta)G(\theta|f)d\theta$, $b_1(f) = \int sin(\theta)G(\theta|f)d\theta$

Results: Inverse Wave Age and Directional Spreading

 Investigation about determinant for directional properties

 $\overline{\sigma_{\theta}(f)}$: frequency-mean directional spreading

 U_{10}/C_p : Inverse wave age

Windsea:

Concentrating in narrow range of U_{10}/\mathcal{C}_p

Difficult to interpret clear dependency

between $\overline{\sigma_{\theta}(f)}$ and U_{10}/\mathcal{C}_p

Swell:

 $\sigma_{\theta}(f)$ decreases with U_{10}/C_{p} , directional spectrum becomes narrow

as inverse wave age increases

Results: Inverse Wave Age and Directional Spreading

as inverse wave age increases

Results: Inverse Wave Age and Directional Spreading

 Investigation about determinant for directional properties

 $\overline{\sigma_{\theta}(f)}$: frequency-mean directional spreading

 U_{10}/C_p : Inverse wave age

Windsea:

Concentrating in narrow range of U_{10}/\mathcal{C}_p

Difficult to interpret clear dependency

between $\overline{\sigma_{\theta}(f)}$ and U_{10}/\mathcal{C}_p

Swell:

 $\overline{\sigma_{\theta}(f)}$ decreases with U_{10}/C_p ,

directional spectrum becomes <u>narrow</u> as inverse wave age <u>increases</u>

Discussions and Conclusions

- Non-dimensional wave statics is <u>limited in narrow range</u> in this field observations
 Contrary to the previous study, ONLY the field data was investigated
- Wave steepness is <u>insufficient for separating windsea and swell</u>
 -Wave steepness of wind wave and swell can be overlapped
- Directional property of dependency on wave statics is different in windsea and swell

windsea: directional spectrum becomes broad as wave steepness increases
-Consistent with previous study, proposed by Goda et al. 1973

Swell: directional spectrum becomes narrow as wave steepness increases
-Swell show the property contrary to windsea

Future Works

- Validation of theories in the previous study with data in various scales
 - -Focused in design use, research for extreme wave events, etc.
- Improvement on inversion method of directional spectrum
 - -Result of inversion is NOT always perfect under too calm or severe sea state
- Improvement on data processing before inversion
 - -In-situ data contains various type noise: spike, drift, jump, etc.
 - -Careful processing including visual inspection is available for reliable analysis
 - -Automated process to reject or modify such marginal data is required for analyzing much data efficiently