MODELLING OF SPILLING AND PLUNGING BREAKING WAVES IN SPECTRAL MODELS
ICCE 2022
PDF

How to Cite

MODELLING OF SPILLING AND PLUNGING BREAKING WAVES IN SPECTRAL MODELS. (2023). Coastal Engineering Proceedings, 37, papers.15. https://doi.org/10.9753/icce.v37.papers.15

Abstract

Based on the data of field experiments and modeling was revealed that the dissipation of the energy of the high-frequency part of the wave spectrum due to wave breaking should compensate the nonlinear growth of higher wave harmonics, which occurs in different ways both for waves breaking with different types and for different methods of modeling a nonlinear source term. The effect of the dissipative term type used on the estimates of sediment transport is discussed.
PDF

References

Antsyferov S. M., Kosyan R. D., Kuznetsov S. Yu., Saprykina Ya. V. 2005. Physical Grounds for the

Formation of the Sediment Flux in the Coastal Zone of a Nontidal Sea. Oceanology, 45, S183–

S190.

Bailard, J.A. 1981. An energetics total load sediment transport model for a plane sloping beach. J.

Geophys. Res., 86, 10938–10954, doi:10.1029/JC086iC11p10938.

Battjes J.A., Beji S. 1992. Breaking waves propagating over a shoal. Proc. 23rd Int. Conf. Coastal Eng.,

-61.

Becq-Girard, F., P. Forget, and M. Benoit. 1999. Non-linear propagation of unidirectional wave fields

over varying topography, Coast. Eng., 38, 91-113.

Beji S., Battjes J.A. 1993. Experimental investigation of wave propagating over a bar. Coastal Eng.,

, 151-162.

Booij, N., L.H. Holthuijsen, and M.P. Bénit. 2009. A distributed collinear triad approximation in

SWAN, Coastal Dynamics 2009, 1-10.

Bredmose H., Schäffer H.A., Madsen P.A. 2004. Boussinesq evolution equations: numerical efficiency,

breaking and amplitude dispersion. Coastal Eng., 51, 1117-1142.

Chen Y., Guza R., Elgar S. 1997. Modeling spectra of breaking surface waves in shallow water. J.

Geophys. Res., 102, 25035-25046.

Eldeberky Y., Battjes J. 1996. Spectral modeling of wave breaking: application to Boussinesq

equations. J. Geophys. Res., 101, 1253-1264.

Eldeberky Y., Madsen P.A. 1999. Determenistic and stochastic evolution equations for fully dispersive

and weakly nonlinear waves. Coastal Eng., 38, 1-24.

Eldeberky, Y. 1996. Nonlinear transformation of wave spectra in the nearshore zone, Ph.D. thesis,

Delft University of Technology, Department of Civil Engineering, The Netherlands, 203 p.p.

Elgar S., Guza R.T., Raubenhaimer B. et al. 1997. Spectral evolution of shoaling and breaking waves

on a barred beach. J. Geophys. Res., 102, 15797-15805.

Herbers, T. H. C., Russnogle, N. R., Elgar, S. 2000. Spectral Energy Balance of Breaking Waves

within the Surf Zone. Journal of Physical Oceanography, 30, 2723-2737.

Salmon J.E., P.B. Smit, T.T. Janssen, L.H. Holthuijsen. 2016. A consistent collinear triad

approximation for operational wave models. Ocean Modelling, 104, 203-212.

Kaihatu J., Kirby J. 1996. Effects of mode truncation and dissipation on predictions of higher order

statistics. Proc. 25th Int. Conf. Coastal Eng., 123-135.

Kirby J., Kaihatu J. 1996. Structure of frequency domain models for random wave breaking. Proc. 25th

Int. Conf. Coastal Eng., 1144-1155.

Kuznetsov, S.Y., Saprykina, Y.V. 2004. Frequency-Dependent Energy Dissipation of Irregular

Breaking Waves. Water Resources , 31, 384–392.

Madsen, P.A.; Sørensen, O.R. 1993. Bound waves and triad interactions in shallow water. Ocean.

Eng., 20, 359–388.

Mase H., Kirby J. 1992. Hybrid Frequency-domain KDV equation for random wave transformation.

Proc. 23rd Int. Conf. Coastal Eng., 474-487.

Mase H., Kitano T. 2000. Spectrum-based prediction model for random wave transformation over

arbitrary bottom topography. Coastal Eng. J., 42, 111-151.

Saprykina, Y. 2020. The Influence of Wave Nonlinearity on Cross-Shore Sediment Transport in

Coastal Zone: Experimental Investigations. Appl. Sci., 10, 4087.

Saprykina, Y.V.; Kuznetsov, S.Y.; Kuznetsova, O.A.; Shugan, I.V.; Chen, Y.Y. 2020. Wave Breaking

Type as a Typical Sign of Nonlinear Wave Transformation Stage in Coastal Zone. Phys. Wave

Phenom., 28, 75–82.

SWAN Team. 2020. SWAN User Manual. SWAN Cycle III Version 41.31A. Delft University of

Technology, 143 p.p.

SWAN Team. 2021. User Manual SWAN - Cycle III version 41.31AB. Delft University of Technology,

p.p.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2023 Yana Saprykina, Burak Aydogan, Berna Ayat