ICCE 2022

How to Cite



Offshore probabilistic tsunami hazard assessments (PTHAs) are increasingly available for earthquake generated tsunamis. They provide standardized representations of tsunami scenarios, their uncertain occurrence-rates, and models of the deep ocean waveforms. To quantify onshore hazards it is natural to combine this information with a site-specific inundation model, but this is computationally challenging to do accurately, especially if accounting for uncertainties in the offshore PTHA. This study reviews an efficient Monte Carlo method recently proposed to solve this problem. The efficiency comes from preferential sampling of scenarios that are likely important near the site of interest, using a user-defined importance measure derived from the offshore PTHA. The theory of importance sampling enables this to be done without biasing the final results. Techniques are presented to help design and test Monte Carlo schemes for a site of interest (before inundation modelling) and to quantify errors in the final results (after inundation modelling). The methods are illustrated with examples from studies in Tongatapu and Western Australia.


AHO, 2022. Australian national tide tables 2022, Tech. rep., Australian Hydrographic Office.

Basili, R., Brizuela, B., Herrero, A., Iqbal, S., Lorito, S., Maesano, F. E., Murphy, S., Perfetti, P., Romano,

F., Scala, A., Selva, J., Taroni, M., Tiberti, M. M., Thio, H. K., Tonini, R., Volpe, M., Glimsdal, S., Harbitz,

C. B., Løvholt, F., Baptista, M. A., Carrilho, F., Matias, L. M., Omira, R., Babeyko, A., Hoechner, A.,

Gurbuz, M., Pekcan, O., Yalciner, A., Canals, M., Lastras, G., Agalos, A., Papadopoulos, G., Triantafyllou,

I., Benchekroun, S., Agrebi Jaouadi, H., Ben Abdallah, S., Bouallegue, A., Hamdi, H., Oueslati, F.,

Amato, A., Armigliato, A., Behrens, J., Davies, G., Di Bucci, D., Dolce, M., Geist, E., Gonzalez Vida,

J. M., Gonzalez, M., Macias Sanchez, J., Meletti, C., Ozer Sozdinler, C., Pagani, M., Parsons, T., Polet,

J., Power, W., Sørensen, M., & Zaytsev, A., 2021. The Making of the NEAM Tsunami Hazard Model

(NEAMTHM18), Frontiers in Earth Science, 8.

Behrens, J., Løvholt, F., Jalayer, F., Lorito, S., Salgado-Galvez, M. A., Sørensen, M., Abadie, S., Aguirre-

Ayerbe, I., Aniel-Quiroga, I., Babeyko, A., Baiguera, M., Basili, R., Belliazzi, S., Grezio, A., Johnson,

K., Murphy, S., Paris, R., Rafliana, I., De Risi, R., Rossetto, T., Selva, J., Taroni, M., Del Zoppo, M.,

Armigliato, A., Bures, V., Cech, P., Cecioni, C., Christodoulides, P., Davies, G., Dias, F., Bayraktar,

H. B., Gonzalez, M., Gritsevich, M., Guillas, S., Harbitz, C. B., Kanoglu, U., MacÃas, J., Papadopoulos,

G. A., Polet, J., Romano, F., Salamon, A., Scala, A., Stepinac, M., Tappin, D. R., Thio, H. K., Tonini, R.,

Triantafyllou, I., Ulrich, T., Varini, E., Volpe, M., & Vyhmeister, E., 2021. Probabilistic tsunami hazard

and risk analysis: A review of research gaps, Frontiers in Earth Science, 9.

Berryman, K., Wallace, L., Hayes, G., Bird, P., Wang, K., Basili, R., Lay, T., Pagani, M., Stein, R., Sagiya,

T., Rubin, C., Barreintos, S., Kreemer, C., Litchfield, N., Stirling, M., Gledhill, K., Haller, K., & Costa,

C., 2015. The GEM Faulted Earth Subduction Interface Characterisation Project: Version 2.0 - April

, Tech. rep., GEM.

Bolker, B. M., 2008. Ecological Models and Data in R, Princeton University Press, Princeton, NJ.

Cheung, K. F., Lay, T., Sun, L., & Yamazaki, Y., 2022. Tsunami size variability with rupture depth, Nature

Geoscience, 15, 33–36.

Dall’Osso, F., Dominey-Howes, D., Moore, C., Summerhayes, S., & Withycombe, G., 2014. The exposure

of Sydney (Australia) to earthquake-generated tsunamis, storms and sea level rise: a probabilistic multihazard

approach, Scientific Reports, 4:7401.

Davies, G., 2019. Tsunami variability from uncalibrated stochastic earthquake models: tests against deep

ocean observations 2006-2016, Geophysical Journal International, 218(3), 1939–1960.

Davies, G. & Griffin, J., 2018. The 2018 Australian Probabilistic Tsunami Hazard Assessment: Hazards

from earthquake generated tsunamis., Tech. rep., Geoscience Australia Record 2018/41.

Davies, G. & Griffin, J., 2020. Sensitivity of Probabilistic Tsunami Hazard Assessment to Far-Field Earthquake

Slip Complexity and Rigidity Depth-Dependence: Case Study of Australia, Pure and Applied

Geophysics, 177, 1521–1548.

Davies, G., Romano, F., & Lorito, S., 2020. Global Dissipation Models for Simulating Tsunamis at Far-

Field Coasts up to 60 hours Post-Earthquake: Multi-Site Tests in Australia, Frontiers in Earth Science,

, 497.

Davies, G., Weber, R., Wilson, K., & Cummins, P., 2022. From offshore to onshore probabilistic tsunami

hazard assessment via efficient Monte Carlo sampling, Geophysical Journal International, 230(3), 1630–

De Risi, R. & Goda, K., 2017. Simulation-based probabilistic tsunami hazard analysis: Empirical and

robust hazard predictions, Pure and Applied Geophysics, 174(8), 3083–3106.

Giblin, J., Damlamian, H., Davies, G., Weber, R., & Wilson, K., 2022. Earthquake Scenario Selection for

Tsunami Inundation Hazard Assessment: Guidelines on using the 2018 Probabilistic Tsunami Hazard

Assessment in the Pacific, Tech. rep., SPC and Geoscience Australia.

Grezio, A., Babeyko, A., Baptista, M. A., Behrens, J., Costa, A., Davies, G., Geist, E. L., Glimsdal, S.,

Gonzalez, F. I., Griffin, J., Harbitz, C. B., LeVeque, R. J., Lorito, S., Løvholt, F., Omira, R., Mueller, C.,

Paris, R., Parsons, T., Polet, J., Power, W., Selva, J., Sørensen, M. B., & Thio, H. K., 2017. Probabilistic

tsunami hazard analysis: Multiple sources and global applications, Reviews of Geophysics, 55(4), 1158–

, 2017RG000579.

Helsel, D. & Hirsch, R., 2002. Statistical methods in water resources, Techniques of Water-Resources

Investigations of the United States Geological Survey, Book 4, Hydrologic Analysis and Interpretation.

Kain, C., 2022. Technical Report on Tsunami Inundation Modelling for the East Coast of Tasmania, Tech.

rep., Geological Survey Branch Mineral Resources Tasmania.

Lynett, P., Wei, Y., & Arcas, D., 2016. Tsunami hazard assessment: Best modeling practices and state-ofthe-

art technology, Tech. rep., Office of Nuclear Regulatory Research.

McCaffrey, R., 2009. The Tectonic Framework of the Sumatran Subduction Zone, Annual Review of Earth

and Planetary Sciences, 37, 345–366.

NTHMP, 2012. Proceedings and Results of the 2011 NTHMP Model BenchmarkingWorkshop, Tech. rep.,

National Tsunami Hazard Mitigation Program, NOAA Special Report.

NTHMP, 2017. Proceedings and Results of the National Tsunami Hazard Mitigation Program 2015

Tsunami Current Modeling Workshop, Tech. rep., National Tsunami Hazard Mitigation Program 2015.

Power,W.,Wang, X.,Wallace, L., Clark, K., & Mueller, C., 2017. The New Zealand Probabilistic Tsunami

Hazard Model: development and implementation of a methodology for estimating tsunami hazard nationwide,

Geological Society, London, Special Publications, 456.

Tonini, R., Di Manna, P., Lorito, S., Selva, J., Volpe, M., Romano, F., Basili, R., Brizuela, B., Castro, M. J.,

de la Asuncion, M., Di Bucci, D., Dolce, M., Garcia, A., Gibbons, S. J., Glimsdal, S., Gonzalez-Vida,

J. M., Løvholt, F., Macias, J., Piatanesi, A., Pizzimenti, L., Sanchez-Linares, C., & Vittori, E., 2021.

Testing Tsunami Inundation Maps for Evacuation Planning in Italy, Frontiers in Earth Science, 9.

Williamson, A. L., Rim, D., Adams, L. M., LeVeque, R. J., Melgar, D., & González, F. I., 2020. A source

clustering approach for efficient inundation modeling and regional scale probabilistic tsunami hazard

assessment, Frontiers in Earth Science, 8.

Zamora, N., Catalan, P. A., Gubler, A., & Carvajal, M., 2021. Microzoning tsunami hazard by combining

flow depths and arrival times, Frontiers in Earth Science, 8.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2023 Gareth Davies