NUMERICAL MODELLING OF TSUNAMIS GENERATED BY GRANULAR LANDSLIDES IN OPENFOAM
ICCE 2022
PDF

How to Cite

NUMERICAL MODELLING OF TSUNAMIS GENERATED BY GRANULAR LANDSLIDES IN OPENFOAM. (2023). Coastal Engineering Proceedings, 37, papers.21. https://doi.org/10.9753/icce.v37.papers.21

Abstract

Landslide-generated tsunamis are a relevant source of hazard for coastal areas. In this paper, the preliminary modelling results of tsunamis generated by deformable landslides by using computational fluid dynamics (CFD) methods, in OpenFOAM, is presented. The numerical approach presented here consists in modelling the granular material by using a Coulomb viscoplastic rheology. This numerical model is applied to reproduce three literature benchmark cases (2D submerged, 2D and 3D subaerial, respectively). Some preliminary qualitative and quantitative numerical results, compared to the experimental ones, are presented in the paper.
PDF

References

S. Abadie, D. Morichon, S. Grilli, and S. Glockner. Numerical simulation of waves generated by

landslides using a multiple-fluid Navier–Stokes model. Coastal Engineering, 57(9):779–794, 2010.

S. Abadie, J. Harris, S. Grilli, and R. Fabre. Numerical modeling of tsunami waves generated by

the flank collapse of the Cumbre Vieja Volcano (La Palma, Canary Islands): tsunami source

and near field effects. Journal of Geophysical Research: Oceans, 117(C5), 2012.

S. Abadie, A. Paris, R. Ata, S. Le Roy, G. Arnaud, A. Poupardin, L. Clous, P. Heinrich, J. Harris,

R. Pedreros, et al. La palma landslide tsunami: computation of the tsunami source with a

calibrated multi-fluid navier-stokes model and wave impact assessment with propagation models

of different types. Natural Hazards and Earth System Sciences Discussions, pages 1–50, 2019.

G. Bellotti and A. Romano. Wavenumber-frequency analysis of landslide-generated tsunamis at a

conical island. Part II: EOF and modal analysis. Coastal Engineering, 128:84–91, 2017.

G. Bellotti, C. Cecioni, and P. De Girolamo. Simulation of small-amplitude frequency-dispersive

transient waves by means of the mild-slope equation. Coastal Engineering, 55(6):447–458, 2008.

J. U. Brackbill, D. B. Kothe, and C. Zemach. A continuum method for modeling surface tension.

Journal of Computational Physics, 100(2):335–354, 1992.

C. Cecioni, A. Romano, G. Bellotti, M. Di Risio, and P. De Girolamo. Real-time inversion of

tsunamis generated by landslides. Natural Hazards & Earth System Sciences, 11(9), 2011.

F. Chen, V. Heller, and R. Briganti. Numerical modelling of tsunamis generated by iceberg calving

validated with large-scale laboratory experiments. Advances in Water Resources, 142:103647,

ISSN 0309-1708.

L. Clous and S. Abadie. Simulation of energy transfers in waves generated by granular slides.

Landslides, pages 1–17, 2019.

P. De Girolamo, M. Di Risio, A. Romano, and M. Molfetta. Landslide tsunami: physical modeling

for the implementation of tsunami early warning systems in the mediterranean sea. Procedia

Engineering, 70:429–438, 2014.

M. del Jesus, J. L. Lara, and I. J. Losada. Three-dimensional interaction of waves and porous

coastal structures: Part I: Numerical model formulation. Coastal Engineering, 64:57–72, 2012.

M. Di Risio, G. Bellotti, A. Panizzo, and P. De Girolamo. Three-dimensional experiments on

landslide generated waves at a sloping coast. Coastal Engineering, 56(5-6):659–671, MAY-JUN

a. ISSN 0378-3839. doi: {10.1016/j.coastaleng.2009.01.009}.

M. Di Risio, P. De Girolamo, G. Bellotti, A. Panizzo, F. Aristodemo, M. G. Molfetta, and A. F.

Petrillo. Landslide-generated tsunamis runup at the coast of a conical island: New physical model

experiments. Journal of Geophysical Research-Oceans, 114, JAN 20 2009b. ISSN 0148-0227. doi:

{10.1029/2008JC004858}.

B. Domnik and S. P. Pudasaini. Full two-dimensional rapid chute flows of simple viscoplastic granular

materials with a pressure-dependent dynamic slip-velocity and their numerical simulations.

Journal of Non-Newtonian Fluid Mechanics, 173:72–86, 2012.

F. Enet and S. T. Grilli. Experimental study of tsunami generation by three-dimensional rigid

underwater landslides. Journal Of Waterway Port Coastal And Ocean Engineering-ASCE, 133

(6):442–454, NOV-DEC 2007. ISSN 0733-950X. doi: 10.1061/(ASCE)0733-950X(2007)133:

(442).

F. Engelund. On the laminar and turbulent flows of ground water through homogeneous sand.

Transactions of the Danish: Academy of Technical Sciences, (3):356–361, 1953.

A. Franci, M. Cremonesi, U. Perego, G. Crosta, and E. Oñate. 3d simulation of vajont disaster.

part 1: Numerical formulation and validation. Engineering Geology, 279:105854, 2020.

H. M. Fritz, F. Mohammed, and J. Yoo. Lituya Bay landslide impact generated mega-tsunami

th anniversary. Pure and Applied Geophysics, 166(1-2):153–175, 2009.

S. T. Grilli, O.-D. S. Taylor, C. D. Baxter, and S. Maretzki. A probabilistic approach for determining

submarine landslide tsunami hazard along the upper east coast of the united states. Marine

Geology, 264(1-2):74–97, 2009.

S. T. Grilli, M. Shelby, O. Kimmoun, G. Dupont, D. Nicolsky, G. Ma, J. T. Kirby, and F. Shi. Modeling

coastal tsunami hazard from submarine mass failures: effect of slide rheology, experimental

validation, and case studies off the us east coast. Natural Hazards, 86(1):353–391, 2017.

S. T. Grilli, D. R. Tappin, S. Carey, S. F. Watt, S. N. Ward, A. R. Grilli, S. L. Engwell, C. Zhang,

J. T. Kirby, L. Schambach, and M. Muslim. Modelling of the tsunami from the December

, 2018 lateral collapse of Anak Krakatau volcano in the Sunda Straits, Indonesia. Scientific

Reports, 9, 2019.

V. Heller and W. H. Hager. Impulse product parameter in landslide generated impulse waves.

Journal of Waterway, Port, Coastal, and Ocean Engineering, 136(3):145–155, 2010.

V. Heller and J. Spinneken. On the effect of the water body geometry on landslide–tsunamis:

Physical insight from laboratory tests and 2D to 3D wave parameter transformation. Coast.

Eng., 104:113–134, 2015.

V. Heller, M. Bruggemann, J. Spinneken, and B. D. Rogers. Composite modelling of subaerial

landslide–tsunamis in different water body geometries and novel insight into slide and wave

kinematics. Coastal Engineering, 109:20–41, 2016.

P. Higuera, J. L. Lara, and I. J. Losada. Realistic wave generation and active wave absorption for

Navier–Stokes models: Application to OpenFOAM®. Coastal Engineering, 71:102–118, 2013a.

P. Higuera, J. L. Lara, and I. J. Losada. Simulating coastal engineering processes with

OpenFOAM®. Coastal Engineering, 71:119–134, 2013b.

P. Higuera, J. L. Lara, and I. J. Losada. Three-dimensional interaction of waves and porous

coastal structures using OpenFOAM®. Part I: formulation and validation. Coastal Engineering,

:243–258, 2014a.

P. Higuera, J. L. Lara, and I. J. Losada. Three-dimensional interaction of waves and porous coastal

structures using OpenFOAM®. Part II: Application. Coastal Engineering, 83:259–270, 2014b.

H. Jasak. Error analysis and estimation for the finite volume method with applications to fluid

flows. (Ph.D thesis) Imperial College London (University of London), 1996.

G.-B. Kim, W. Cheng, R. C. Sunny, J. J. Horrillo, B. C. McFall, F. Mohammed, H. M. Fritz,

J. Beget, and Z. Kowalik. Three dimensional landslide generated tsunamis: Numerical and

physical model comparisons. Landslides, pages 1–17, 2019a.

J. Kim, F. Løvholt, D. Issler, and C. F. Forsberg. Landslide material control on tsunami genesis—

the Storegga slide and tsunami (8,100 years bp). Journal of Geophysical Research: Oceans,

b.

J. T. Kirby, S. T. Grilli, J. Horrillo, P. L.-F. Liu, D. Nicolsky, S. Abadie, B. Ataie-Ashtiani, M. J.

Castro, L. Clous, C. Escalante, et al. Validation and inter-comparison of models for landslide

tsunami generation. Ocean Modelling, 170:101943, 2022.

J. L. Lara, I. J. Losada, M. Maza, and R. Guanche. Breaking solitary wave evolution over a porous

underwater step. Coastal Engineering, 58(9):837–850, 2011.

J. L. Lara, M. del Jesus, and I. J. Losada. Three-dimensional interaction of waves and porous

coastal structures: Part II: Experimental validation. Coastal Engineering, 64:26–46, 2012.

B. E. Larsen and D. R. Fuhrman. On the over-production of turbulence beneath surface waves in

reynolds-averaged navier–stokes models. Journal of Fluid Mechanics, 853:419–460, 2018.

C.-H. Lee and Z. Huang. Effects of grain size on subaerial granular landslides and resulting impulse

waves: experiment and multi-phase flow simulation. Landslides, 19(1):137–153, 2022.

E. K. Lindstrøm. Waves generated by subaerial slides with various porosities. Coastal Engineering,

:170–179, 2016.

P.-F. Liu, T.-R. Wu, F. Raichlen, C. Synolakis, and J. Borrero. Runup and rundown generated by

three-dimensional sliding masses. Journal of Fluid Mechanics, 536:107–144, 2005.

I. J. Losada, J. L. Lara, and M. del Jesus. Modeling the interaction of water waves with

porous coastal structures. Journal of Waterway, Port, Coastal, and Ocean Engineering, 142

(6):03116003, 2016. doi: 10.1061/(ASCE)WW.1943-5460.0000361.

F. Løvholt, C. B. Harbitz, and K. B. Haugen. A parametric study of tsunamis generated by

submarine slides in the Ormen Lange/Storegga area off western Norway. In Ormen Lange–an

Integrated Study for Safe Field Development in the Storegga Submarine Area, pages 219–231.

Elsevier, 2005.

F. Løvholt, G. Pedersen, C. B. Harbitz, S. Glimsdal, and J. Kim. On the characteristics of

landslide tsunamis. Philosophical Transactions of the Royal Society A: Mathematical, Physical

and Engineering Sciences, 373(2053):20140376, 2015.

P. Lynett and P. L. F. Liu. A numerical study of the run-up generated by three-dimensional

landslides. Journal of Geophysical Research-Oceans, 110(C3), MAR 8 2005. ISSN 0148-0227.

doi: {10.1029/2004JC002443}.

G. Ma, J. T. Kirby, T.-J. Hsu, and F. Shi. A two-layer granular landslide model for tsunami wave

generation: Theory and computation. Ocean Modelling, 93:40–55, 2015.

H. Marschall, K. Hinterberger, C. Schüler, F. Habla, and O. Hinrichsen. Numerical simulation

of species transfer across fluid interfaces in free-surface flows using OpenFOAM. Chemical

Engineering Science, 78:111–127, 2012.

B. C. McFall and H. M. Fritz. Physical modelling of tsunamis generated by three-dimensional

deformable granular landslides on planar and conical island slopes. Proceedings of the Royal Society

of London. Series A: Mathematical, Physical and Engineering Sciences, 472–2188:20160052,

F. Mohammed and H. M. Fritz. Physical modeling of tsunamis generated by three-dimensional

deformable granular landslides. Journal of Geophysical Research: Oceans (1978–2012), 117

(C11), 2012.

F. Montagna, G. Bellotti, and M. Di Risio. 3D numerical modeling of landslide-generated tsunamis

around a conical island. Natural Hazards, 58(1):591–608, 2011.

R. P. Mulligan, A. Franci, M. A. Celigueta, and W. A. Take. Simulations of landslide wave

generation and propagation using the particle finite element method. Journal of Geophysical

Research: Oceans, 125(6):e2019JC015873, 2020. doi: 10.1029/2019JC015873.

A. Panizzo, P. De Girolamo, M. Di Risio, A. Maistri, and A. Petaccia. Great landslide events in

italian artificial reservoirs. Natural Hazards and Earth System Sciences, 5(5):733–740, 2005. doi:

5194/nhess-5-733-2005.

A. Paris, P. Heinrich, and S. Abadie. Landslide tsunamis: Comparison between depth-averaged and

navier-stokes models. Coastal Engineering, 170:104022, 2021. ISSN 0378-3839. doi: https://

doi.org/10.1016/j.coastaleng.2021.104022. URL https://www.sciencedirect.com/science/

article/pii/S0378383921001678.

M. Rauter, L. Hoße, R. Mulligan, W. Take, and F. Løvholt. Numerical simulation of impulse wave

generation by idealized landslides with openfoam. Coastal Engineering, 165:103815, 2021. ISSN

-3839.

M. Rauter, S. Viroulet, S. S. Gylfadóttir, W. Fellin, and F. Løvholt. Granular porous landslide

tsunami modelling–the 2014 lake askja flank collapse. Nature communications, 13(1):1–13, 2022.

A. Romano, G. Bellotti, and M. Di Risio. Wavenumber–frequency analysis of the landslidegenerated

tsunamis at a conical island. Coastal Engineering, 81:32–43, 2013.

A. Romano, M. Di Risio, G. Bellotti, M. Molfetta, L. Damiani, and P. De Girolamo. Tsunamis

generated by landslides at the coast of conical islands: experimental benchmark dataset for

mathematical model validation. Landslides, 13(6):1379–1393, 2016.

A. Romano, M. Di Risio, M. G. Molfetta, G. Bellotti, D. Pasquali, P. Sammarco, L. Damiani,

and P. De Girolamo. 3D physical modeling of tsunamis generated by submerged landslides at a

conical island: The role of initial acceleration. Coastal Engineering Proceedings, 1(35):14, 2017.

A. Romano, J. L. Lara, G. Barajas, B. Di Paolo, G. Bellotti, M. Di Risio, I. J. Losada, and

P. De Girolamo. Tsunamis generated by submerged landslides: Numerical analysis of the nearfield

wave characteristics. Journal of Geophysical Research: Oceans, 125(7):e2020JC016157,

G. Ruffini, V. Heller, and R. Briganti. Numerical modelling of landslide-tsunami propagation in a

wide range of idealised water body geometries. Coastal Engineering, page 103518, 2019.

C. Shi, Y. An, Q. Wu, Q. Liu, and Z. Cao. Numerical simulation of landslide-generated waves using

a soil–water coupling smoothed particle hydrodynamics model. Advances in Water Resources,

:130–141, 2016.

P. Si, H. Shi, and X. Yu. A general numerical model for surface waves generated by granular

material intruding into a water body. Coastal Engineering, 142:42–51, 2018.

T. Takabatake, D. C. Han, J. J. Valdez, N. Inagaki, M. Mäll, M. Esteban, and T. Shibayama.

Three-dimensional physical modeling of tsunamis generated by partially submerged landslides.

Journal of Geophysical Research: Oceans, 127(1):e2021JC017826, 2022.

M. R. A. Van Gent. Wave interaction with permeable coastal structures. (Ph.D thesis) Delft

University, 1995.

S. Viroulet, A. Sauret, and O. Kimmoun. Tsunami generated by a granular collapse down a rough

inclined plane. EPL (Europhysics Letters), 105(3):34004, 2014.

A. von Boetticher, J. M. Turowski, B. W. McArdell, D. Rickenmann, and J. W. Kirchner.

Debrisintermixing-2.3: a finite volume solver for three-dimensional debris-flow simulations with

two calibration parameters–part 1: Model description. Geoscientific Model Development, 9(9):

–2923, 2016.

P. Watts. Wavemaker curves for tsunamis generated by underwater landslides. Journal of Waterway,

Port, Coastal, and Ocean Engineering, 124(3):127–137, 1998. doi: 10.1061/(ASCE)

-950X(1998)124:3(127).

P. Watts, S. Grilli, J. Kirby, G. Fryer, and D. Tappin. Landslide tsunami case studies using a

Boussinesq model and a fully nonlinear tsunami generation model. Natural Hazards And Earth

System Sciences, 3(5):391–402, 2003.

H. G. Weller. A new approach to vof-based interface capturing methods for incompressible and

compressible flow. OpenCFD Ltd., Report TR/HGW, 4, 2008.

C. Whittaker, R. Nokes, H.-Y. Lo, P.-F. Liu, and M. Davidson. Physical and numerical modelling

of tsunami generation by a moving obstacle at the bottom boundary. Environmental Fluid

Mechanics, 17(5):929–958, 2017.

G. Zitti, C. Ancey, M. Postacchini, and M. Brocchini. Impulse waves generated by snow avalanches:

momentum and energy transfer to a water body. Journal of Geophysical Research: Earth Surface,

(12):2399–2423, 2016.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2023 A Romano, J Lara, G Barajas, IJ Losada