ICCE 2022

How to Cite

A VALIDATION OF WAVE LOADS ON CREST WALLS ON TOP OF COMPOSITE BREAKWATERS USING OPENFOAM. (2023). Coastal Engineering Proceedings, 37, papers.23. https://doi.org/10.9753/icce.v37.papers.23


The design of crest walls is often based on empirical formulations, physical model tests, numerical models and a fair amount of expert judgement. The present work validates the prediction of wave induced forces on the front face of crest walls on top of composite breakwaters in the numerical model OpenFOAM. The results show that OpenFOAM is able to capture the shape and order of magnitude of the force events caused by non-breaking and heavily breaking waves. In addition, a calibrated model predicts the highest wave induces forces caused by breaking waves with errors lower than 20percent.


Antonini, A., Archetti, R., and Lamberti, A. 2017. Wave simulation for the design of an innovative quay wall: the case of Vlorë Harbour, Nat. Hazards Earth Syst. Sci., 17, 127–142, https://doi.org/10.5194/nhess-17-127-2017

Berberović, E., van Hinsberg, N., Jakirlić, S., Roisman, I., and Tropea, C. 2009. Drop impact onto a liquid layer of finite thickness: Dynamics of the cavity evolution, American Physical Society, 79 (3), 15, https://doi.org/10.1103/PhysRevE.79.036306

Boersen, S., Scholl, O., Jacobsen, N., and van der Lem, C. 2019. Applying a numerical wave flume to predict wave overtopping, Proceedings of the 38th IAHR World Congress, https://doi.org/10.3850/38WC092019-1337

Brown, S., Greaves, D., Magar, V., and Conley, D. 2016. Evaluation of turbulence closure models under spilling and plunging breakers in the surf zone, Coastal Engineering, 114, 177–193, https://doi.org/10.1016/j.coastaleng.2016.04.002

Castellino, M., Romano, A., Lara, J.L., Losada I.J., and Girolamo, P. 2021. Confined-crest impact: Forces dimensional analysis and extension of the Goda's formulae to recurved parapets, Coastal Engineering, 163, https://doi.org/10.1016/j.coastaleng.2020.103814

Chen, W., Warmink, J.J., van Gent, M.R.A., and Hulscher, S.J.M.H. 2021. Numerical modelling of wave overtopping at dikes using OpenFOAM®, Coastal Engineering, 166, https://doi.org/10.1016/j.coastaleng.2021.103890

CUR, CIRIA, and CETMEF. 2007. Rock Manual, The use of rock in hydraulic engineering (Second ed.). London.

Devolder, B. 2018. Hydrodynamic Modelling of Wave Energy Converter Arrays, Ph.D. Thesis, Ghent University and KU Leuven.

DHI. 2019. 11824034 Holyhead Breakwater 2D Physical Model Test Report, Technical Report.

Engsig-Karup, A. P., Bingham, H., and Lindberg, O. 2009. An efficient flexible-order model for 3D non-linear water waves, Journal of Computational Physics, 228 (6), 2100–2118, https://doi.org/10.1016/j.jcp.2008.11.028

Hsu, T.-J., Sakakiyama, T., and Liu, P. L.-F. 2002. A numerical model for wave motions and turbulence flows in front of a composite breakwater, Coastal Engineering, 46 (1), 25–50, https://doi.org/10.1016/S0378-3839(02)00045-5

Irías Mata, M., and van Gent, M.R.A. 2023. Numerical modelling of wave overtopping discharges at rubble mound breakwaters using OpenFOAM®, Coastal Engineering; https://doi.org/10.1016/j.coastaleng.2022.104274

Jacobsen, N., Fuhrman, D., and Fredsøe, J. 2012. A wave generation toolbox for the open-source CFD library: OpenFoam®. International Journal for Numerical Methods in Fluids, 70 (9), 1073–1088, https://doi.org/10.1002/fld.2726

Jacobsen, N., van Gent, M.R.A., and Wolters, G. 2015. Numerical analysis of the interaction of irregular waves with two dimensional permeable coastal structures, Coastal Engineering; 102, 13–29, https://doi.org/10.1016/j.coastaleng.2015.05.004

Jacobsen, N., van Gent, M.R.A., and Fredsøe, J. 2017. Numerical modelling of the erosion and deposition of sand inside a filter layer, Coastal Engineering, 120, 47–63, https://doi.org/10.1016/j.coastaleng.2016.09.003.

Jacobsen, N., van Gent, M.R.A., Capel, A., and Borsboom, M. 2018. Numerical prediction of wave loads on crest walls on top of rubble mound structures, Coastal Engineering, 142, 110–124, https://doi.org/10.1016/j.coastaleng.2018.10.004

Jensen, B., Jacobsen, N., and Christensen, E. D. 2014. Investigations on the porous media equations and resistance coefficients for coastal structures, Coastal Engineering, 84, 56–72, https://doi.org/10.1016/j.coastaleng.2013.11.004

Karagiannis, N., Karambas, T., and Koutitas, C. 2015. Wave overtopping numerical simulation using OpenFoam, E-Proceeding of the 36th IAHR world congress.

Larsen, B. E., and Fuhrman, D. R. 2018. On the over-production of turbulence beneath surface waves in Reynolds-Averaged Navier–Stokes models, Journal of Fluid Mechanics, 853, 419–460. https://doi.org/10.1017/jfm.2018.577

Lee, G. S., Oh, S.-H., and Yoon, S. B. 2019. Evaluation of Empirical Porous-Media Parameters for Numerical Simulation of Wave Pressure on Caisson Breakwater Armored with Tetrapods, Journal of Korean Society of Coastal and Ocean Engineers, 31 (6), 344–350. https://doi.org/10.9765/KSCOE.2019.31.6.344

Molines, J., Bayon, A., Gómez-Martín, M.E., and Medina, J.R. 2019. Influence of parapets on wave overtopping on mound breakwaters with crown walls, Sustainability, 11, 7109, https://doi.org/10.3390/su11247109

Neves, M. G., Reis, M. T., Gadelho, J. F., Lara, J. L., Pinto, F. T., Lopes, H. G., and Cabral, J. P. 2011. Numerical modelling of waves interacting with the breakwaters of Leixões harbour, Portugal, International Conference on Computational Methods in Marine Engineering MARINE 2011.

Nørgaard, J. Q. H., Andersen, T. L., and Burcharth, H. F. 2013. Wave loads on rubble mound breakwater crown walls in deep and shallow water wave conditions, Coastal Engineering, 80, 137–147. https://doi.org/10.1016/j.coastaleng.2013.06.003

Paulsen, B. T., Bingham, H. B., and Bredmose, H. 2013. Efficient computations of wave loads on offshore structures, PhD Thesis, Technical University of Denmark.

Pedersen, J. 1996. Wave Forces and Overtopping on Crown Walls of Rubble Mound Breakwaters, Ph.D. Thesis, Aalborg University.

Ramachandran, K., Schimmels, S., Stagonas, D., and Müller, G. 2013. Measuring Wave Impact on Coastal Structures with High Spatial and Temporal Resolution – Tactile Pressure Sensors a Novel Approach, Proceedings of 2013 IAHR Congress.

Van Gent, M.R.A., Tonjes, P., Petit, H.A.H., and van den Bosch, P. 1994. Wave action on and in permeable structures, Coastal Engineering Proceedings, https://doi.org/10.9753/icce.v24.%25p

Van Gent, M.R.A. 1995a. Wave interaction with permeable coastal structures. Ph.D. Thesis, TU Delft, ISBN 90-407-1182-8, Delft University Press.

Van Gent, M.R.A. 1995b. Porous flow though rubble mound material, Journal of Waterway, Port, Coastal and Ocean Engineering. 121 (3), 176-181.

Van Gent, M.R.A., Jacobsen, N., and Wolters, G. 2018. Modelling of open filters under wave loading. Proceedings Coasts, Marine Structures and Breakwaters 2017. https://doi.org/10.1680/cmsb.63174.1081

Weller, H. G., Tabor, G., Jasak, H., and Fureby, C. 1998. A tensorial approach to computational continuum mechanics using object-oriented techniques. Computers in Physics, 12 (6), 620, https://doi.org/10.1063/1.168744

Zelt, J., and Skjelbreia, J. E. 1993. Estimating Incident and Reflected Wave Fields Using an Arbitrary Number of Wave Gauges, Coastal Engineering Proceedings, 1(23), https://doi.org/10.1061/9780872629332.058

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2023 Marisol Irías Mata, Stef Boersen, Marcel R.A. van Gent, Alessandro Antonini, Bjarne Jensen, Cock van der Lem