Abstract
The propagation of long waves of finite amplitude in water with depth to wavelength ratios less than about one-tenth and greater than about one-fiftieth can be described by cnoidal wave theory. To date little use has been made of the theory because of the difficulties involved in practical application. This paper presents the theory necessary for predicting the transforming characteristics of long waves based on cnoidal theory. Basically the method involves calculating the power transmission for a wave train m shallow water from cnoidal theory and equating this to the deep water power transmission assuming no reflections or loss of energy as the waves move into shoaling water. The equations for wave power have been programmed for the range of cnoidal waves, and the results are plotted in non-dimensional form.
Authors retain copyright and grant the Proceedings right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this Proceedings.