Abstract
Multiple linear regression analysis is applied to predict horizontal velocities and acceleration of water particles subjected to waves. Furthermore it was used to predict the coefficient of drag for circular piles. The mean value functions of the parameters are calculated and the assumption of their lognormal distribution reasonably well verified. The method used here is free from theoretical assumptions about wave mechanisms and, hence, explains the behavior of experimental results. Using Monte Carlo simulation these regression relations were then utilized to generate the distribution functions of wave forces. Using the Morison force equation, in this simulation, the distribution function for the drag and the inertial components of the force are determined separately. A linear superposition of those time varying processes was performed to obtain the distribution of the total maximum force. Finally a probabilistic wave height-wave force relationship was developed for the purpose of creating a force distribution function given a random sea state.
Authors retain copyright and grant the Proceedings right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this Proceedings.