SPECTRAL WAVE ATTENUATION BY BOTTOM FRICTION: THEORY
PDF

Keywords

bottom friction
friction theory
wave attenuation
spectral wave

How to Cite

SPECTRAL WAVE ATTENUATION BY BOTTOM FRICTION: THEORY. (1988). Coastal Engineering Proceedings, 1(21), 34. https://doi.org/10.9753/icce.v21.34

Abstract

Based on the linearized form of the boundary layer equations and a simple eddy viscosity formulation of shear stress, the turbulent bottom boundary layer flow is obtained for a wave motion specified by its directional spectrum. Closure is obtained by requiring the solution to reduce, in the limit, to that of a simple harmonic wave. The resulting dissipation is obtained in spectral form with a single friction factor determined from knowledge of the bottom roughness and an equivalent monochromatic wave having the same root-mean-square near-bottom orbital velocity and excursion amplitude as the specified wave spectrum. The total spectral dissipation rate is obtained by integration and compared with the average dissipation obtained from a model considering the statistics of individual waves defined by their maximum orbital velocity and zero-crossing period. The agreement between the two different evaluations of total spectral dissipation supports the validity of the spectral dissipation model.
PDF
Authors retain copyright and grant the Proceedings right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this Proceedings.