Abstract
The flow visualization technique was applied to the collision of two solitary waves propagating in the same and opposite directions. Measurements of the velocity and trajectory of the solitary waves were conducted using a particle image velocimetry (PIV) system consisting of an 8-W ND:YAG laser and a high-speed CCD camera. In the solitary- wave interaction tests, we set up three kinds of velocity fields-smaller, taller, and compound waves in the rear-end collision tests, and right-running, left-running, and colliding waves in the head-on collision tests. Instantaneous and spatial surface profiles were measured using the image thresholding method in which the boundary plane between the air and water can be detected as the interface having the maximum luminance value. The measured run-up elevation of the colliding wave was compared with the theoretical elevation using a third-order perturbation solution. Based on a Eulerian-Lagrangian algorithm, the PIV result was applied to the particle tracking process that occurred in the two- dimensional plane.References
Airy, G.B. 1841. On tides and waves, Encyclopedia Metro., London, 241-396.
Boussinesq, M.J. 1871. Théorie des ondes et des remous qui se propagent le long d'un canal réctangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond, J. Math. Pures Appl., 17, 55-108.
Byatt-Smith, J.G.B. 1971. An integral equation for unsteady surface waves and a comment on the Boussinesq equation, J. Fluid Mech., 49, 625-633.
Byatt-Smith, J.G.B. 1987a. On the change of amplitude of interacting solitary waves, J. Fluid Mech., 182, 485-497.
Byatt-Smith, J.G.B. 1987b. Perturbation theory for approximately integrable partial differential equations, and the change of amplitude of solitary-wave solutions of the BBM equation, J. Fluid Mech., 182, 467-483.
Cauchy, A-L. 1827. Memoire sur la theorie de la propagation des ondes a la surface d'un fluide pesant d'une profondeur indefinie, Mem. Presentes Divers Savans Acad. R. Sci. Inst. France (Prix Acad. R. Sci., concours de 1815 et de 1816) I:3-312.
Chan, R.K.C. and R.L. Street. 1970. A computer study of finite-amplitude water waves, J. Comput. Phys., 6, 68-94.
Constantin, A. 2011. Nonlinear water waves with applications to wave-current interactions and tsunamis, CBMS-NSF Regional Conference Series in Applied Mathematics, 81, 317p.
Coudraye, F.C. de Loynes. 1796. Theories des Vents et des Ondes, Copenhagen: Christensen. Kon. Ges. Wiss. Kopenhagen, 105-50.
Craig, W., P. Guyenne, J. Hammack., D. Henderson and C. Sulem. 2006. Solitary water wave interactions, Phys. Fluids, 18, 057106.
Dauxois, T. and M. Peyrard. 2006. Physics of Solitons, Cambridge, 422p.
Dean, R.G. and R.A. Dalrymple. 1984. Water Wave Mechanics for Engineers and Scientists, Prentice- Hall, Englewood Cliffs, NJ, 353p.
Drazin, P.G. and R.S. Johnson. 1989. Solitons: an Introduction, Cambridge, 226p.
Fenton, J.D. 1972. A ninth-order solution for the solitary wave, J. Fluid Mech., 53, 257-271.
Fenton, J.D. and M. Rienecker. 1982. Fourier method for solving nonlinear water-wave problems: application to solitary-wave interactions, J. Fluid Mech., 118, 411-443.
Fermi, E., J. Pasta, and S.M. Ulam. 1955. Studies in nonlinear problems, Tech. Rep., LA-1940, Los Alamos Sci. Lab.
Flaugergues, M. 1793. Hollandsche Maatschappye der Weetenschappen te Haarlem, xxix Deel, p. 131.
Gerstner, F.J. von. 1802. Theorie der Wellen. Abhand. Kon. Bohmischen Gesel. Wiss., Prague.
Goring, D.G. 1979. Tsunamis -The propagation of long waves onto a shelf, Ph.D. thesis, Caltech, 337p.
Green G. 1838. On the motion of waves in a variable canal of small depth and width, Trans. Camb. Philos. Soc. 6:457-462.
Hammack, J., D. Henderson, P. Guyenne and Y. Ming. 2004. Solitary-wave collisions, A Symp. to honor Theodore Yao-Tsu Wu, OMAE 2004, ASME, 1-12.
Hirota, R. 1971. Exact solution of Korteweg-de Vries equation for multiple collisions of solitons, Phys. Rev. Lett., 27, 1192-4.
Kelland, P. 1840. On the theory of waves, Part 1. Trans. Roy. Soc. Edinburgh, 14:497-545.
Korteweg, D.J. and G. deVries. 1895. On the change of form of long waves advancing in a rectangular canal and on a new type of long stationary waves, Phil. Mag., 39, 422-443.
Laitone, E.V. 1960, The Second Approximation to Cnoidal and Solitary Waves, J. Fluid Mech., 9, 430-444.
Marchant, T.R and N.F. Smyth. 1990. The extended Korteweg-de Vries equation and the resonant flow of a fluid over topography, J. Fluid Mech., 221, 263-288.
Maxworthy, T. 1976. Experiments on collisions between solitary waves, J. Fluid Mech., 76, 177-185. Mirie, R.M. and C.H. Su. 1982.
Collisions between two solitary waves. Part 2. A numerical study, J. Fluid Mech., 115, 475-492.
Poisson, S.D. 1818. Memoire sur la theorie des ondes, Mem. Acad. R. Sci. Inst. France. 1816, 2nd Ser. 1:70-186.
Rayleigh, Lord. 1876. On waves, Phil. Mag. (5), 1, 257-279.
Remoissenet, M. 1999. Waves Called Solitons: Concepts and Experiments, Springer, 327p.
Renouard, D., F. Santos and A. Temperville. 1985. Experimental study of the generation, damping, and reflexion of a solitary wave, Dyn. Atmos. Oceans, 9, 341-358.
Russell, J.S. 1844. Report on waves, Rep. Meet. Brit. Assoc. Adv. Sci., 14, 311-390.
Russell, J.S. and J. Robison. 1837. Report on waves, Rep., Br. Assoc. Adv. Sci., 417-496.
Schwartz, L.W. 1974. Computer extension and analytic continuation of Stokes' expansion for gravity waves, J. Fluid Mech., 62, 553-578.
Shimizu, R., T. Shintani and M. Umeyama. 2006. Instantaneous and Lagragian velocity fields of internal waves on a slope by PIV measurement and numerical simulation, Annu. J. Coast. Eng., JSCE, 52, 1-5.
Stokes, G.G. 1847. On the theory of oscillatory waves, Trans. Cambridge Phil. Soc., 8 (441).
Su, C.H. and R.M. Mirie. 1980. On head-on collisions between two solitary wave, J. Fluid Mech., 98, 509-525.
Umeyama, M. 2008. PIV techniques for velocity fields of internal waves over a slowly varying bottom topography, J. Water., Port, Coast. & Oc. Eng., ASCE, 134(5), 286-298.
Umeyama, M. 2011. Coupled PIV and PTV measurements of particle velocities and trajectories for surface waves following a steady current, J. Water., Port, Coast. & Oc. Eng., ASCE, 137(2), 85-94.
Umeyama, M. 2012. Eulerian/Lagrangian analysis for particle velocities and trajectories in a pure wave motion using particle image velocimetry, In a Theme Issue 'Nonlinear Water Waves' edited by Adrian Constantin, Phil. Trans. Roy. Soc. A, Roy. Soc. Pub., 370(1964), 1687-1702.
Umeyama, M. 2013. Investigation of single and multiple solitary waves using superresolution PIV, J. Water., Port, Coast. & Oc. Eng., ASCE, 139(4), 303-313.
Umeyama, M. and S. Matsuki. 2011. Measurements of velocity and trajectory of water particle for internal waves in two density layers, Geo. Res. Lett., AGU, 38, L03612.
Umeyama, M. and K.-C. Nguyen. 2012. PIV measurements of particle velocities and trajectories for internal waves propagating in a two-layer fluid on a sloping boundary, Proc., ICCE, ASCE, 33,
currents.54.
Umeyama, M. and H. Shinomiya. 2009. Particle image velocimetry measurements for Stokes progressive internal waves, Geo. Res. Lett., 36(6), AGU, L06603.
Umeyama, M., T. Shintani and S. Watanabe. 2010. Measurements of particle velocities and trajectories in a wave-current motion using PIV and PTV, Proc., ICCE, ASCE, 32, Waves.2.
Umeyama, M., T. Shintani, K.-C. Nguyen and S. Matsuki. 2012. Measurements of particle velocities and trajectories for internal waves propagating in a density-stratified two-layer fluid on a slope, Chapter 12 in "Particle Image Velocimetry" edited by Cavazzini Giovanna, InTech, 321-344.
Weber, E.H. and W.E. Weber. 1825. Wellenlehre auf Experimente gegrundet, Leipzig: Gerhardt Fleischer.
Weidman, P. and T. Maxworthy. 1978. Experiments on strong interactions between solitary waves, J. Fluid Mech., 85, 417-431.
Zabusky, N.J. and M.D. Kruskal. 1965. Interaction of solitons in a collisionless plasma and the recurrence of initial states, Phys. Rev. Lett., 15, 240-3.